Your browser doesn't support javascript.
loading
Inward rectifier potassium channels in the HL-1 cardiomyocyte-derived cell line.
Goldoni, Dana; Zhao, YouYou; Green, Brian D; McDermott, Barbara J; Collins, Anthony.
Afiliação
  • Goldoni D; Cardiovascular Remodelling Group, Centre for Vision and Vascular Science, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK.
J Cell Physiol ; 225(3): 751-6, 2010 Nov.
Article em En | MEDLINE | ID: mdl-20568224
HL-1 is a line of immortalized cells of cardiomyocyte origin that are a useful complement to native cardiomyocytes in studies of cardiac gene regulation. Several types of ion channel have been identified in these cells, but not the physiologically important inward rectifier K(+) channels. Our aim was to identify and characterize inward rectifier K(+) channels in HL-1 cells. External Ba(2+) (100 µM) inhibited 44 ± 0.05% (mean ± s.e.m., n = 11) of inward current in whole-cell patch-clamp recordings. The reversal potential of the Ba(2+)-sensitive current shifted with external [K(+)] as expected for K(+)-selective channels. The slope conductance of the inward Ba(2+)-sensitive current increased with external [K(+)]. The apparent Kd for Ba(2+) was voltage dependent, ranging from 15 µM at -150 mV to 148 µM at -75 mV in 120 mM external K(+). This current was insensitive to 10 µM glybenclamide. A component of whole-cell current was sensitive to 150 µM 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), although it did not correspond to the Ba(2+)-sensitive component. The effect of external 1 mM Cs(+) was similar to that of Ba(2+). Polymerase chain reaction using HL-1 cDNA as template and primers specific for the cardiac inward rectifier K(ir)2.1 produced a fragment of the expected size that was confirmed to be K(ir)2.1 by DNA sequencing. In conclusion, HL-1 cells express a current that is characteristic of cardiac inward rectifier K(+) channels, and express K(ir)2.1 mRNA. This cell line may have use as a system for studying inward rectifier gene regulation in a cardiomyocyte phenotype.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Potássio / Canais de Potássio Corretores do Fluxo de Internalização / Miócitos Cardíacos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2010 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Potássio / Canais de Potássio Corretores do Fluxo de Internalização / Miócitos Cardíacos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2010 Tipo de documento: Article