Cannabinoid and cholinergic systems interact during performance of a short-term memory task in the rat.
Learn Mem
; 17(10): 502-11, 2010 Oct.
Article
em En
| MEDLINE
| ID: mdl-20876271
It is now well established that cannabinoid agonists such as Δ(9)-tetrahydrocannabinol (THC), anandamide, and WIN 55,212-2 (WIN-2) produce potent and specific deficits in working memory (WM)/short-term memory (STM) tasks in rodents. Although mediated through activation of CB1 receptors located in memory-related brain regions such as the hippocampus and prefrontal cortex, these may, in part, be due to a reduction in acetylcholine release (i.e., cholinergic hypofunction). To determine the interaction between cannabinoid and cholinergic systems, we exposed rats treated with WIN-2 or cholinergic drugs to a hippocampal-dependent delayed nonmatch to sample (DNMS) task to study STM, and recorded hippocampal single-unit activity in vivo. WIN-2 induced significant deficits in DNMS performance and reduced the average firing and bursting rates of hippocampal principal cells through a CB1 receptor-mediated mechanism. Rivastigmine, an acetylcholinesterase inhibitor, reversed these STM deficits and normalized hippocampal discharge rates. Effects were specific to 1 mg/kg WIN-2 as rivastigmine failed to reverse the behavioral and physiological deficits that were observed in the presence of MK-801, an NMDA receptor antagonist. This supports the notion that cannabinoid-modulated cholinergic activity is a mechanism underlying the performance deficits in DNMS. Whether deficits are due to reduced nicotinic or muscarinic receptor activation, or both, awaits further analysis.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Canabinoides
/
Acetilcolina
/
Hipocampo
/
Memória de Curto Prazo
Limite:
Animals
Idioma:
En
Ano de publicação:
2010
Tipo de documento:
Article