Your browser doesn't support javascript.
loading
A graphical model framework for decoding in the visual ERP-based BCI speller.
Neural Comput ; 23(1): 160-82, 2011 Jan.
Article em En | MEDLINE | ID: mdl-20964540
We present a graphical model framework for decoding in the visual ERP-based speller system. The proposed framework allows researchers to build generative models from which the decoding rules are obtained in a straightforward manner. We suggest two models for generating brain signals conditioned on the stimulus events. Both models incorporate letter frequency information but assume different dependencies between brain signals and stimulus events. For both models, we derive decoding rules and perform a discriminative training. We show on real visual speller data how decoding performance improves by incorporating letter frequency information and using a more realistic graphical model for the dependencies between the brain signals and the stimulus events. Furthermore, we discuss how the standard approach to decoding can be seen as a special case of the graphical model framework. The letter also gives more insight into the discriminative approach for decoding in the visual speller system.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Córtex Visual / Processamento de Sinais Assistido por Computador / Potenciais Evocados / Potenciais Evocados Visuais / Modelos Neurológicos / Modelos Teóricos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2011 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Córtex Visual / Processamento de Sinais Assistido por Computador / Potenciais Evocados / Potenciais Evocados Visuais / Modelos Neurológicos / Modelos Teóricos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2011 Tipo de documento: Article