Your browser doesn't support javascript.
loading
Towards non-invasive EIT imaging of domains with deformable boundaries.
Kantartzis, Panagiotis; Kunoth, Angela; Pabel, Roland; Liatsis, Panos.
Afiliação
  • Kantartzis P; Information Engineering and Medical Imaging Group, City University London, Northampton square, EC1V 0HB, UK. p.kantartzis@city.ac.uk
Article em En | MEDLINE | ID: mdl-21096680
We investigate on the use of the Domain Embedding Method (DEM) for the forward modelling in EIT. This approach is suitably configured to overcome the model meshing bottleneck since it does not require that the mesh on the domain is adapted to the boundary surface. This is of crucial importance for, e.g., clinical applications of EIT, as it avoids tedious and time-consuming (re-)meshing procedures. The suggested DEM approach can accommodate arbitrary yet Lipschitz smooth boundary surfaces and is not limited to polygonal domains. For the discretisation purposes, we employ B-splines as they allow for arbitrary accuracy by raising the polynomial degree and are easy to implement due to their inherent piecewise polynomial structure. Numerical experiments confirm that a B-spline discretization yields, similarly to conventional Finite Difference discretizations, increasing condition numbers of the system matrix with respect to the discretisation levels. Fortunately, multiresolution ideas based on B-splines allow for optimal wavelet preconditioning.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Interpretação de Imagem Assistida por Computador / Tomografia / Espectroscopia Dielétrica / Modelos Biológicos Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2010 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Interpretação de Imagem Assistida por Computador / Tomografia / Espectroscopia Dielétrica / Modelos Biológicos Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2010 Tipo de documento: Article