Your browser doesn't support javascript.
loading
Mitochondrial oxidant stress triggers cell death in simulated ischemia-reperfusion.
Loor, Gabriel; Kondapalli, Jyothisri; Iwase, Hirotaro; Chandel, Navdeep S; Waypa, Gregory B; Guzy, Robert D; Vanden Hoek, Terry L; Schumacker, Paul T.
Afiliação
  • Loor G; Department of Surgery, University of Chicago, Chicago, IL 60637, USA.
Biochim Biophys Acta ; 1813(7): 1382-94, 2011 Jul.
Article em En | MEDLINE | ID: mdl-21185334
ABSTRACT
To clarify the relationship between reactive oxygen species (ROS) and cell death during ischemia-reperfusion (I/R), we studied cell death mechanisms in a cellular model of I/R. Oxidant stress during simulated ischemia was detected in the mitochondrial matrix using mito-roGFP, a ratiometric redox sensor, and by Mito-Sox Red oxidation. Reperfusion-induced death was attenuated by over-expression of Mn-superoxide dismutase (Mn-SOD) or mitochondrial phospholipid hydroperoxide glutathione peroxidase (mito-PHGPx), but not by catalase, mitochondria-targeted catalase, or Cu,Zn-SOD. Protection was also conferred by chemically distinct antioxidant compounds, and mito-roGFP oxidation was attenuated by NAC, or by scavenging of residual O(2) during the ischemia (anoxic ischemia). Mitochondrial permeability transition pore (mPTP) oscillation/opening was monitored by real-time imaging of mitochondrial calcein fluorescence. Oxidant stress caused release of calcein to the cytosol during ischemia, a response that was inhibited by chemically diverse antioxidants, anoxia, or over-expression of Mn-SOD or mito-PHGPx. These findings suggest that mitochondrial oxidant stress causes oscillation of the mPTP prior to reperfusion. Cytochrome c release from mitochondria to the cytosol was not detected until after reperfusion, and was inhibited by anoxic ischemia or antioxidant administration during ischemia. Although DNA fragmentation was detected after I/R, no evidence of Bax activation was detected. Over-expression of the anti-apoptotic protein Bcl-X(L) in cardiomyocytes did not confer protection against I/R-induced cell death. Moreover, murine embryonic fibroblasts with genetic depletion of Bax and Bak, or over-expression of Bcl-X(L), failed to show protection against I/R. These findings indicate that mitochondrial ROS during ischemia triggers mPTP activation, mitochondrial depolarization, and cell death during reperfusion through a Bax/Bak-independent cell death pathway. Therefore, mitochondrial apoptosis appears to represent a redundant death pathway in this model of simulated I/R. This article is part of a Special Issue entitled Mitochondria and Cardioprotection.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Traumatismo por Reperfusão Miocárdica / Miócitos Cardíacos / Proteínas de Transporte da Membrana Mitocondrial / Mitocôndrias Cardíacas Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2011 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Traumatismo por Reperfusão Miocárdica / Miócitos Cardíacos / Proteínas de Transporte da Membrana Mitocondrial / Mitocôndrias Cardíacas Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2011 Tipo de documento: Article