Your browser doesn't support javascript.
loading
Organic matter flow in the food web at a temperate heath under multifactorial climate change.
Andresen, Louise C; Konestabo, Heidi S; Maraldo, Kristine; Holmstrup, Martin; Ambus, Per; Beier, Claus; Michelsen, Anders.
Afiliação
  • Andresen LC; Department of Biology, Terrestrial Ecology Section, University of Copenhagen, Oester Farimagsgade 2D, DK-1353 Copenhagen K, Denmark. loand@life.ku.dk
Rapid Commun Mass Spectrom ; 25(11): 1485-96, 2011 Jun 15.
Article em En | MEDLINE | ID: mdl-21594921
ABSTRACT
The rising atmospheric CO(2) concentration, increasing temperature and changed patterns of precipitation currently expose terrestrial ecosystems to altered environmental conditions. This may affect belowground nutrient cycling through its intimate relationship with the belowground decomposers. Three climate change factors (elevated CO(2), increased temperature and drought) were investigated in a full factorial field experiment at a temperate heathland location. The combined effect of biotic and abiotic factors on nitrogen and carbon flows was traced in plant root → litter → microbe → detritivore/omnivore → predator food-web for one year after amendment with (15)N(13)C(2)-glycine. Isotope ratio mass spectrometry (IRMS) measurement of (15)N/(14)N and (13)C/(12)C in soil extracts and functional ecosystem compartments revealed that the recovery of (15)N sometimes decreased through the chain of consumption, with the largest amount of bioactive (15)N label pool accumulated in the microbial biomass. The elevated CO(2) concentration at the site for 2 years increased the biomass, the (15)N enrichment and the (15)N recovery in detritivores. This suggests that detritivore consumption was controlled by both the availability of the microbial biomass, a likely major food source, and the climatic factors. Furthermore, the natural abundance δ(13)C of enchytraeids was significantly altered in CO(2)-fumigated plots, showing that even small changes in δ(13)C-CO(2) can be used to detect transfer of carbon from primary producers to detritivores. We conclude that, in the short term, the climate change treatments affected soil organism activity, possibly with labile carbohydrate production controlling the microbial and detritivore biomass, with potential consequences for the decomposition of detritus and nutrient cycling. Hence, there appears to be a strong coupling of responses in carbon and nitrogen cycling at this temperate heath.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Dióxido de Carbono / Cadeia Alimentar / Aquecimento Global / Ciclo do Nitrogênio / Modelos Biológicos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2011 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Dióxido de Carbono / Cadeia Alimentar / Aquecimento Global / Ciclo do Nitrogênio / Modelos Biológicos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2011 Tipo de documento: Article