Your browser doesn't support javascript.
loading
Effects of simulated microgravity on expression profile of microRNA in human lymphoblastoid cells.
Mangala, Lingegowda S; Zhang, Ye; He, Zhenhua; Emami, Kamal; Ramesh, Govindarajan T; Story, Michael; Rohde, Larry H; Wu, Honglu.
Afiliação
  • Mangala LS; Radiation Biophysics Laboratory, NASA Johnson Space Center, Houston, TX 77058, USA. lingegowda.s.mangala@nasa.gov
J Biol Chem ; 286(37): 32483-90, 2011 Sep 16.
Article em En | MEDLINE | ID: mdl-21775437
ABSTRACT
This study explores the changes in expression of microRNA (miRNA) and related genes under simulated microgravity conditions. In comparison with static 1 × g, microgravity has been shown to alter global gene expression patterns and protein levels in cultured cells or animals. miRNA has recently emerged as an important regulator of gene expression, possibly regulating as many as one-third of all human genes. However, very little is known about the effect of altered gravity on miRNA expression. To test the hypothesis that the miRNA expression profile would be altered in zero gravity resulting in altered regulation of gene expression leading to metabolic or functional changes in cells, we cultured TK6 human lymphoblastoid cells in a high aspect ratio vessel (bioreactor) for 72 h either in the rotating condition to model microgravity in space or in the static condition as a control. Expression of several miRNAs was changed significantly in the simulated microgravity condition including miR-150, miR-34a, miR-423-5p, miR-22, miR-141, miR-618, and miR-222. To confirm whether this altered miRNA expression correlates with gene expression and functional changes of the cells, we performed DNA microarray and validated the related genes using quantitative RT-PCR. Expression of several transcription factors including EGR2, ETS1, and c-REL was altered in simulated microgravity conditions. Taken together, the results reported here indicate that simulated microgravity alters the expression of miRNAs and genes in TK6 cells. To our knowledge, this study is the first to report the effects of simulated microgravity on the expression of miRNA and related genes.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ausência de Peso / Linfócitos / Regulação da Expressão Gênica / MicroRNAs Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2011 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ausência de Peso / Linfócitos / Regulação da Expressão Gênica / MicroRNAs Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2011 Tipo de documento: Article