Your browser doesn't support javascript.
loading
Time-resolved vibrational spectroscopy of a molecular shuttle.
Panman, Matthijs R; Bodis, Pavol; Shaw, Danny J; Bakker, Bert H; Newton, Arthur C; Kay, Euan R; Leigh, David A; Buma, Wybren Jan; Brouwer, Albert M; Woutersen, Sander.
Afiliação
  • Panman MR; Van't Hoff Insitute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
Phys Chem Chem Phys ; 14(6): 1865-75, 2012 Feb 14.
Article em En | MEDLINE | ID: mdl-22033540
ABSTRACT
Time-resolved vibrational spectroscopy is used to investigate the inter-component motion of an ultraviolet-triggered two-station molecular shuttle. The operation cycle of this molecular shuttle involves several intermediate species, which are observable in the amide I and amide II regions of the mid-IR spectrum. Using ab initio calculations on specific parts of the rotaxane, and by comparing the transient spectra of the normal rotaxane with that of the N-deuterated version, we can assign the observed vibrational modes of each species occurring during the shuttling cycle in an unambiguous way. The complete time- and frequency-dependent data set is analyzed using singular value decomposition (SVD). Using a kinetic model to describe the time-dependent concentrations of the transient species, we derive the absorption spectra associated with each stage in the operation cycle of the molecular shuttle, including the recombination of the charged species.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2012 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2012 Tipo de documento: Article