Your browser doesn't support javascript.
loading
Pancreatic islets engineered with SA-FasL protein establish robust localized tolerance by inducing regulatory T cells in mice.
Yolcu, Esma S; Zhao, Hong; Bandura-Morgan, Laura; Lacelle, Chantale; Woodward, Kyle B; Askenasy, Nadir; Shirwan, Haval.
Afiliação
  • Yolcu ES; Institute for Cellular Therapeutics, University of Louisville, Louisville, KY 40202, USA.
J Immunol ; 187(11): 5901-9, 2011 Dec 01.
Article em En | MEDLINE | ID: mdl-22068235
ABSTRACT
Allogeneic islet transplantation is an important therapeutic approach for the treatment of type 1 diabetes. Clinical application of this approach, however, is severely curtailed by allograft rejection primarily initiated by pathogenic effector T cells regardless of chronic use of immunosuppression. Given the role of Fas-mediated signaling in regulating effector T cell responses, we tested if pancreatic islets can be engineered ex vivo to display on their surface an apoptotic form of Fas ligand protein chimeric with streptavidin (SA-FasL) and whether such engineered islets induce tolerance in allogeneic hosts. Islets were modified with biotin following efficient engineering with SA-FasL protein that persisted on the surface of islets for >1 wk in vitro. SA-FasL-engineered islet grafts established euglycemia in chemically diabetic syngeneic mice indefinitely, demonstrating functionality and lack of acute toxicity. Most importantly, the transplantation of SA-FasL-engineered BALB/c islet grafts in conjunction with a short course of rapamycin treatment resulted in robust localized tolerance in 100% of C57BL/6 recipients. Tolerance was initiated and maintained by CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells, as their depletion early during tolerance induction or late after established tolerance resulted in prompt graft rejection. Furthermore, Treg cells sorted from graft-draining lymph nodes, but not spleen, of long-term graft recipients prevented the rejection of unmodified allogeneic islets in an adoptive transfer model, further confirming the Treg role in established tolerance. Engineering islets ex vivo in a rapid and efficient manner to display on their surface immunomodulatory proteins represents a novel, safe, and clinically applicable approach with important implications for the treatment of type 1 diabetes.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Recombinantes de Fusão / Transplante das Ilhotas Pancreáticas / Ilhotas Pancreáticas / Linfócitos T Reguladores / Proteína Ligante Fas / Tolerância Imunológica Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2011 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Recombinantes de Fusão / Transplante das Ilhotas Pancreáticas / Ilhotas Pancreáticas / Linfócitos T Reguladores / Proteína Ligante Fas / Tolerância Imunológica Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2011 Tipo de documento: Article