Your browser doesn't support javascript.
loading
Heat transfer and pressure drop characteristics of nanofluids in a plate heat exchanger.
Kwon, Y H; Kim, D; Li, C G; Lee, J K; Hong, D S; Lee, J G; Lee, S H; Cho, Y H; Kim, S H.
Afiliação
  • Kwon YH; School of Mechanical Engineering, Pusan National University, 609-735, Republic of Korea.
J Nanosci Nanotechnol ; 11(7): 5769-74, 2011 Jul.
Article em En | MEDLINE | ID: mdl-22121605
ABSTRACT
In this paper, the heat transfer characteristics and pressure drop of the ZnO and Al2O3 nanofluids in a plate heat exchanger were studied. The experimental conditions were 100-500 Reynolds number and the respective volumetric flow rates. The working temperature of the heat exchanger was within 20-40 degrees C. The measured thermophysical properties, such as thermal conductivity and kinematic viscosity, were applied to the calculation of the convective heat transfer coefficient of the plate heat exchanger employing the ZnO and Al2O3 nanofluids made through a two-step method. According to the Reynolds number, the overall heat transfer coefficient for 6 vol% Al2O3 increased to 30% because at the given viscosity and density of the nanofluids, they did not have the same flow rates. At a given volumetric flow rate, however, the performance did not improve. After the nanofluids were placed in the plate heat exchanger, the experimental results pertaining to nanofluid efficiency seemed inauspicious.
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2011 Tipo de documento: Article
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2011 Tipo de documento: Article