Your browser doesn't support javascript.
loading
Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase.
Manrao, Elizabeth A; Derrington, Ian M; Laszlo, Andrew H; Langford, Kyle W; Hopper, Matthew K; Gillgren, Nathaniel; Pavlenok, Mikhail; Niederweis, Michael; Gundlach, Jens H.
Afiliação
  • Manrao EA; Department of Physics, University of Washington, Seattle, Washington, USA.
Nat Biotechnol ; 30(4): 349-53, 2012 Mar 25.
Article em En | MEDLINE | ID: mdl-22446694
ABSTRACT
Nanopore technologies are being developed for fast and direct sequencing of single DNA molecules through detection of ionic current modulations as DNA passes through a pore's constriction. Here we demonstrate the ability to resolve changes in current that correspond to a known DNA sequence by combining the high sensitivity of a mutated form of the protein pore Mycobacterium smegmatis porin A (MspA) with phi29 DNA polymerase (DNAP), which controls the rate of DNA translocation through the pore. As phi29 DNAP synthesizes DNA and functions like a motor to pull a single-stranded template through MspA, we observe well-resolved and reproducible ionic current levels with median durations of ∼28 ms and ionic current differences of up to 40 pA. Using six different DNA sequences with readable regions 42-53 nucleotides long, we record current traces that map to the known DNA sequences. With single-nucleotide resolution and DNA translocation control, this system integrates solutions to two long-standing hurdles to nanopore sequencing.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sequenciamento de Nucleotídeos em Larga Escala / Nanoporos Idioma: En Ano de publicação: 2012 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sequenciamento de Nucleotídeos em Larga Escala / Nanoporos Idioma: En Ano de publicação: 2012 Tipo de documento: Article