Your browser doesn't support javascript.
loading
Chemokine-like receptor 1 regulates skeletal muscle cell myogenesis.
Issa, Mark E; Muruganandan, Shanmugam; Ernst, Matthew C; Parlee, Sebastian D; Zabel, Brian A; Butcher, Eugene C; Sinal, Christopher J; Goralski, Kerry B.
Afiliação
  • Issa ME; Faculty of Health Professions, College of Pharmacy, Dalhousie University, Halifax, Nova Scotia, Canada.
Am J Physiol Cell Physiol ; 302(11): C1621-31, 2012 Jun 01.
Article em En | MEDLINE | ID: mdl-22460713
ABSTRACT
The chemokine-like receptor-1 (CMKLR1) is a G protein-coupled receptor that is activated by chemerin, a secreted plasma leukocyte attractant and adipokine. Previous studies identified that CMKLR1 is expressed in skeletal muscle in a stage-specific fashion during embryogenesis and in adult mice; however, its function in skeletal muscle remains unclear. Based on the established function of CMKLR1 in cell migration and differentiation, we investigated the hypothesis that CMKLR1 regulates the differentiation of myoblasts into myotubes. In C(2)C(12) mouse myoblasts, CMKLR1 expression increased threefold with differentiation into multinucleated myotubes. Decreasing CMKLR1 expression by adenoviral-delivered small-hairpin RNA (shRNA) impaired the differentiation of C(2)C(12) myoblasts into mature myotubes and reduced the mRNA expression of myogenic regulatory factors myogenin and MyoD while increasing Myf5 and Mrf4. At embryonic day 12.5 (E12.5), CMKLR1 knockout (CMKLR1(-/-)) mice appeared developmentally delayed and displayed significantly lower wet weights and a considerably diminished myotomal component of somites as revealed by immunolocalization of myosin heavy chain protein compared with wild-type (CMKLR1(+/+)) mouse embryos. These changes were associated with increased Myf5 and decreased MyoD protein expression in the somites of E12.5 CMKLR1(-/-) mouse embryos. Adult male CMKLR1(-/-) mice had significantly reduced bone-free lean mass and weighed less than the CMKLR1(+/+) mice. We conclude that CMKLR1 is essential for myogenic differentiation of C(2)C(12) cells in vitro, and the CMKLR1 null mice have a subtle skeletal muscle deficit beginning from embryonic life that persists during postnatal life.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Músculo Esquelético / Fibras Musculares Esqueléticas / Desenvolvimento Muscular / Células Musculares / Receptores Acoplados a Proteínas G Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2012 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Músculo Esquelético / Fibras Musculares Esqueléticas / Desenvolvimento Muscular / Células Musculares / Receptores Acoplados a Proteínas G Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2012 Tipo de documento: Article