Your browser doesn't support javascript.
loading
A unique approach to accurately measure thickness in thick multilayers.
Shi, Bing; Hiller, Jon M; Liu, Yuzi; Liu, Chian; Qian, Jun; Gades, Lisa; Wieczorek, Michael J; Marander, Albert T; Maser, Jorg; Assoufid, Lahsen.
Afiliação
  • Shi B; X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA. shi@anl.gov
J Synchrotron Radiat ; 19(Pt 3): 425-7, 2012 May.
Article em En | MEDLINE | ID: mdl-22514179
ABSTRACT
X-ray optics called multilayer Laue lenses (MLLs) provide a promising path to focusing hard X-rays with high focusing efficiency at a resolution between 5 nm and 20 nm. MLLs consist of thousands of depth-graded thin layers. The thickness of each layer obeys the linear zone plate law. X-ray beamline tests have been performed on magnetron sputter-deposited WSi(2)/Si MLLs at the Advanced Photon Source/Center for Nanoscale Materials 26-ID nanoprobe beamline. However, it is still very challenging to accurately grow each layer at the designed thickness during deposition; errors introduced during thickness measurements of thousands of layers lead to inaccurate MLL structures. Here, a new metrology approach that can accurately measure thickness by introducing regular marks on the cross section of thousands of layers using a focused ion beam is reported. This new measurement method is compared with a previous method. More accurate results are obtained using the new measurement approach.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2012 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2012 Tipo de documento: Article