Your browser doesn't support javascript.
loading
Effect of hydrogen plasma pretreatment on the growth of silicon nanowires and their employment as the anode material of lithium secondary batteries.
Kim, Jung Sub; Byun, Dongjin; Lee, Joong Kee.
Afiliação
  • Kim JS; Advanced Energy Materials Processing Laboratory, Battery Research Center, Korea Institute of Science and Technology, P. O. Box 131, Cheongryang Seoul 130-650, South Korea.
J Nanosci Nanotechnol ; 12(2): 1429-33, 2012 Feb.
Article em En | MEDLINE | ID: mdl-22629972
ABSTRACT
Silicon nanowires were grown from a silane and argon gas mixture directly on a stainless steel substrate by radio-frequency plasma enhanced chemical vapor deposition (RF-PECVD) and used without any further treatment as the anode in the fabrication of lithium ion batteries. It was found that suitable pretreatment of the stainless steel substrate was required for the satisfactory growth of the silicon nanowires. In this study, the substrates were polished, etched in HF solution, coated with an aluminum catalyst layer with a thickness of c.a. 10 nm and then treated with a hydrogen plasma before the growth of the silicon nanowires. SEM (Scanning Electron Microscopy) and AFM (Atomic Force Microscopy) analyses showed that the grain size and surface roughness were increased after the hydrogen plasma pretreatment. The electrochemical performance of the silicon nanowires anode was also improved when the aluminum coated stainless steel substrate was exposed to the plasma for 20 min or longer; the initial coulombic efficiency was increased from 69.7% to 82% at a current density of 30 mA cm(-2).
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2012 Tipo de documento: Article
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2012 Tipo de documento: Article