Your browser doesn't support javascript.
loading
Increasing sequence diversity with flexible backbone protein design: the complete redesign of a protein hydrophobic core.
Murphy, Grant S; Mills, Jeffrey L; Miley, Michael J; Machius, Mischa; Szyperski, Thomas; Kuhlman, Brian.
Afiliação
  • Murphy GS; Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA.
Structure ; 20(6): 1086-96, 2012 Jun 06.
Article em En | MEDLINE | ID: mdl-22632833
ABSTRACT
Protein design tests our understanding of protein stability and structure. Successful design methods should allow the exploration of sequence space not found in nature. However, when redesigning naturally occurring protein structures, most fixed backbone design algorithms return amino acid sequences that share strong sequence identity with wild-type sequences, especially in the protein core. This behavior places a restriction on functional space that can be explored and is not consistent with observations from nature, where sequences of low identity have similar structures. Here, we allow backbone flexibility during design to mutate every position in the core (38 residues) of a four-helix bundle protein. Only small perturbations to the backbone, 1-2 Å, were needed to entirely mutate the core. The redesigned protein, DRNN, is exceptionally stable (melting point >140°C). An NMR and X-ray crystal structure show that the side chains and backbone were accurately modeled (all-atom RMSD = 1.3 Å).
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Bactérias / Engenharia de Proteínas Tipo de estudo: Health_economic_evaluation Idioma: En Ano de publicação: 2012 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Bactérias / Engenharia de Proteínas Tipo de estudo: Health_economic_evaluation Idioma: En Ano de publicação: 2012 Tipo de documento: Article