Your browser doesn't support javascript.
loading
Studying and modelling dynamic biological processes using time-series gene expression data.
Bar-Joseph, Ziv; Gitter, Anthony; Simon, Itamar.
Afiliação
  • Bar-Joseph Z; Lane Center for Computational Biology and Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA. zivbj@cs.cmu.edu
Nat Rev Genet ; 13(8): 552-64, 2012 Jul 18.
Article em En | MEDLINE | ID: mdl-22805708
Biological processes are often dynamic, thus researchers must monitor their activity at multiple time points. The most abundant source of information regarding such dynamic activity is time-series gene expression data. These data are used to identify the complete set of activated genes in a biological process, to infer their rates of change, their order and their causal effects and to model dynamic systems in the cell. In this Review we discuss the basic patterns that have been observed in time-series experiments, how these patterns are combined to form expression programs, and the computational analysis, visualization and integration of these data to infer models of dynamic biological systems.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Expressão Gênica / Perfilação da Expressão Gênica / Modelos Genéticos Limite: Animals / Humans Idioma: En Ano de publicação: 2012 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Expressão Gênica / Perfilação da Expressão Gênica / Modelos Genéticos Limite: Animals / Humans Idioma: En Ano de publicação: 2012 Tipo de documento: Article