Developing and evaluating prediction models in rehabilitation populations.
Arch Phys Med Rehabil
; 93(8 Suppl): S138-53, 2012 Aug.
Article
em En
| MEDLINE
| ID: mdl-22840880
This article presents a 3-part framework for developing and evaluating prediction models in rehabilitation populations. First, a process for developing and refining prognostic research questions and the scientific approach to prediction models is presented. Primary components of the scientific approach include the study design and sampling of patients, outcome measurement, selecting predictor variable(s), minimizing methodologic sources of bias, assuring a sufficient sample size for statistical power, and selecting an appropriate statistical model. Examples focus on prediction modeling using samples of rehabilitation patients. Second, a brief overview for statistically building and validating multivariable prediction models is provided, which includes the following 7 steps: data inspection, coding of predictors, model specification, model estimation, model performance, model validation, and model presentation. Third, we propose a set of primary considerations for evaluating prediction model studies using specific quality indicators as criteria to help stakeholders evaluate the quality of a prediction model study. Lastly, we offer perspectives on the future development and use of rehabilitation prediction models.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Reabilitação
/
Projetos de Pesquisa
/
Modelos Estatísticos
Tipo de estudo:
Clinical_trials
/
Prognostic_studies
/
Risk_factors_studies
Limite:
Humans
Idioma:
En
Ano de publicação:
2012
Tipo de documento:
Article