Your browser doesn't support javascript.
loading
Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer's disease model.
Sanchez, Pascal E; Zhu, Lei; Verret, Laure; Vossel, Keith A; Orr, Anna G; Cirrito, John R; Devidze, Nino; Ho, Kaitlyn; Yu, Gui-Qiu; Palop, Jorge J; Mucke, Lennart.
Afiliação
  • Sanchez PE; Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA.
Proc Natl Acad Sci U S A ; 109(42): E2895-903, 2012 Oct 16.
Article em En | MEDLINE | ID: mdl-22869752
ABSTRACT
In light of the rising prevalence of Alzheimer's disease (AD), new strategies to prevent, halt, and reverse this condition are needed urgently. Perturbations of brain network activity are observed in AD patients and in conditions that increase the risk of developing AD, suggesting that aberrant network activity might contribute to AD-related cognitive decline. Human amyloid precursor protein (hAPP) transgenic mice simulate key aspects of AD, including pathologically elevated levels of amyloidpeptides in brain, aberrant neural network activity, remodeling of hippocampal circuits, synaptic deficits, and behavioral abnormalities. Whether these alterations are linked in a causal chain remains unknown. To explore whether hAPP/amyloid-ß-induced aberrant network activity contributes to synaptic and cognitive deficits, we treated hAPP mice with different antiepileptic drugs. Among the drugs tested, only levetiracetam (LEV) effectively reduced abnormal spike activity detected by electroencephalography. Chronic treatment with LEV also reversed hippocampal remodeling, behavioral abnormalities, synaptic dysfunction, and deficits in learning and memory in hAPP mice. Our findings support the hypothesis that aberrant network activity contributes causally to synaptic and cognitive deficits in hAPP mice. LEV might also help ameliorate related abnormalities in people who have or are at risk for AD.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Piracetam / Sinapses / Cognição / Transtornos Cognitivos / Doença de Alzheimer / Anticonvulsivantes / Rede Nervosa Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2012 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Piracetam / Sinapses / Cognição / Transtornos Cognitivos / Doença de Alzheimer / Anticonvulsivantes / Rede Nervosa Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2012 Tipo de documento: Article