The effects of electronic polarization on water adsorption in metal-organic frameworks: H2O in MIL-53(Cr).
J Chem Phys
; 137(5): 054704, 2012 Aug 07.
Article
em En
| MEDLINE
| ID: mdl-22894368
The effects of electronic polarization on the adsorption of water in the MIL-53(Cr) metal-organic framework are investigated using molecular dynamics simulations. For this purpose a fully polarizable force field for MIL-53(Cr) was developed which is compatible with the ab initio-based TTM3-F water model. The analysis of the spatial distributions of the water molecules within the MIL-53(Cr) nanopores calculated as a function of loading indicates that polarization effects play an important role in the formation of hydrogen bonds between the water molecules and the hydroxyl groups of the framework. As a result, large qualitative differences are found between the radial distribution functions calculated with non-polarizable and polarizable force fields. The present analysis suggests that polarization effects can significantly impact molecular adsorption in metal-organic frameworks under hydrated conditions.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Água
/
Compostos de Cromo
/
Simulação de Dinâmica Molecular
/
Nanoporos
Tipo de estudo:
Qualitative_research
Idioma:
En
Ano de publicação:
2012
Tipo de documento:
Article