The stress-activated protein kinases p38α/ß and JNK1/2 cooperate with Chk1 to inhibit mitotic entry upon DNA replication arrest.
Cell Cycle
; 11(19): 3627-37, 2012 Oct 01.
Article
em En
| MEDLINE
| ID: mdl-22935704
Accurate DNA replication is crucial for the maintenance of genome integrity. To this aim, cells have evolved complex surveillance mechanisms to prevent mitotic entry in the presence of partially replicated DNA. ATR and Chk1 are key elements in the signal transduction pathways of DNA replication checkpoint; however, other kinases also make significant contributions. We show here that the stress kinases p38 and JNK are activated when DNA replication is blocked, and that their activity allows S/M, but not G 2/M, checkpoint maintenance when Chk1 is inhibited. Activation of both kinases by DNA replication inhibition is not mediated by the caffeine-sensitive kinases ATR or ATM. Phosphorylation of MKK3/6 and MKK4, p38 and JNK upstream kinases was also observed upon DNA replication inhibition. Using a genetic approach, we dissected the p38 pathway and showed that both p38α and p38ß isoforms collaborate to inhibit mitotic entry. We further defined MKK3/6 and MK2/3 as the key upstream and downstream elements in the p38 signaling cascade after replication arrest. Accordingly, we found that the stress signaling pathways collaborate with Chk1 to keep cyclin B1/Cdk1 complexes inactive when DNA replication is inhibited, thereby preventing cell cycle progression when DNA replication is stalled. Our results show a complex response to replication stress, where multiple pathways are activated and fulfill overlapping roles to prevent mitotic entry with unreplicated DNA.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Proteínas Quinases
/
Proteínas Quinases JNK Ativadas por Mitógeno
/
Proteína Quinase 11 Ativada por Mitógeno
/
Proteína Quinase 14 Ativada por Mitógeno
/
Replicação do DNA
/
Mitose
Limite:
Animals
Idioma:
En
Ano de publicação:
2012
Tipo de documento:
Article