MyRIP interaction with MyoVa on secretory granules is controlled by the cAMP-PKA pathway.
Mol Biol Cell
; 23(22): 4444-55, 2012 Nov.
Article
em En
| MEDLINE
| ID: mdl-22993210
Myosin- and Rab-interacting protein (MyRIP), which belongs to the protein kinase A (PKA)-anchoring family, is implicated in hormone secretion. However, its mechanism of action is not fully elucidated. Here we investigate the role of MyRIP in myosin Va (MyoVa)-dependent secretory granule (SG) transport and secretion in pancreatic beta cells. These cells solely express the brain isoform of MyoVa (BR-MyoVa), which is a key motor protein in SG transport. In vitro pull-down, coimmunoprecipitation, and colocalization studies revealed that MyRIP does not interact with BR-MyoVa in glucose-stimulated pancreatic beta cells, suggesting that, contrary to previous notions, MyRIP does not link this motor protein to SGs. Glucose-stimulated insulin secretion is augmented by incretin hormones, which increase cAMP levels and leads to MyRIP phosphorylation, its interaction with BR-MyoVa, and phosphorylation of the BR-MyoVa receptor rabphilin-3A (Rph-3A). Rph-3A phosphorylation on Ser-234 was inhibited by small interfering RNA knockdown of MyRIP, which also reduced cAMP-mediated hormone secretion. Demonstrating the importance of this phosphorylation, nonphosphorylatable and phosphomimic Rph-3A mutants significantly altered hormone release when PKA was activated. These data suggest that MyRIP only forms a functional protein complex with BR-MyoVa on SGs when cAMP is elevated and under this condition facilitates phosphorylation of SG-associated proteins, which in turn can enhance secretion.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Proteínas Quinases Dependentes de AMP Cíclico
/
AMP Cíclico
/
Cadeias Pesadas de Miosina
/
Vesículas Secretórias
/
Miosina Tipo V
/
Proteínas de Transporte Vesicular
/
Células Secretoras de Insulina
Limite:
Animals
Idioma:
En
Ano de publicação:
2012
Tipo de documento:
Article