Your browser doesn't support javascript.
loading
Enhanced growth inhibition of osteosarcoma by cytotoxic polymerized liposomal nanoparticles targeting the alcam cell surface receptor.
Federman, Noah; Chan, Jason; Nagy, Jon O; Landaw, Elliot M; McCabe, Katelyn; Wu, Anna M; Triche, Timothy; Kang, Hyunggyoo; Liu, Bin; Marks, James D; Denny, Christopher T.
Afiliação
  • Federman N; Division of Pediatric Hematology/Oncology, Department of Pediatrics, Mattel Children's Hospital and Gwynne Hazen Cherry Memorial Laboratories, UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095-1781, USA.
Sarcoma ; 2012: 126906, 2012.
Article em En | MEDLINE | ID: mdl-23024593
ABSTRACT
Osteosarcoma is the most common primary malignancy of bone in children, adolescents, and adults. Despite extensive surgery and adjuvant aggressive high-dose systemic chemotherapy with potentially severe bystander side effects, cure is attainable in about 70% of patients with localized disease and only 20%-30% of those patients with metastatic disease. Targeted therapies clearly are warranted in improving our treatment of this adolescent killer. However, a lack of osteosarcoma-associated/specific markers has hindered development of targeted therapeutics. We describe a novel osteosarcoma-associated cell surface antigen, ALCAM. We, then, create an engineered anti-ALCAM-hybrid polymerized liposomal nanoparticle immunoconjugate (α-AL-HPLN) to specifically target osteosarcoma cells and deliver a cytotoxic chemotherapeutic agent, doxorubicin. We have demonstrated that α-AL-HPLNs have significantly enhanced cytotoxicity over untargeted HPLNs and over a conventional liposomal doxorubicin formulation. In this way, α-AL-HPLNs are a promising new strategy to specifically deliver cytotoxic agents in osteosarcoma.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2012 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2012 Tipo de documento: Article