Your browser doesn't support javascript.
loading
Plant hydraulics and photosynthesis of 34 woody species from different successional stages of subtropical forests.
Zhu, Shi-Dan; Song, Juan-Juan; Li, Rong-Hua; Ye, Qing.
Afiliação
  • Zhu SD; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China.
Plant Cell Environ ; 36(4): 879-91, 2013 Apr.
Article em En | MEDLINE | ID: mdl-23057774
ABSTRACT
It is important to understand the ecophysiological characters of plants when exploring mechanisms underlying species substitution in the process of plant succession. In the present study, we selected 34 woody species from different stages of secondary succession in subtropical forests of southern China, and measured their hydraulic conductivity, gas exchange rates, leaf nutrients and drought-tolerance traits such as xylem resistance to cavitation, turgor loss point and carbon isotope ratio. Principal component analysis revealed that early-, mid- and late-successional species were significantly separated along axis 1, which was strongly associated with hydraulic-photosynthetic coordination. In contrast to species distributed in late-successional forest, early-successional species had the highest hydraulic conductivity, net photosynthetic rates, photosynthetic nitrogen and phosphorus use efficiencies, but had the lowest photosynthetic water-use efficiency. However, changes of the measured drought-tolerance traits of the 34 species along the succession did not demonstrate a clear trend - no significant correlations between these traits and plant successional stages were found. Moreover, the trade-off between hydraulic efficiency and safety was not identified. Taken together, our results suggested that hydraulic efficiency and photosynthetic function, rather than drought tolerance, play an important role in species distributions along plant succession in subtropical forests.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fotossíntese / Árvores / Água / Transpiração Vegetal / Xilema País/Região como assunto: Asia Idioma: En Ano de publicação: 2013 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fotossíntese / Árvores / Água / Transpiração Vegetal / Xilema País/Região como assunto: Asia Idioma: En Ano de publicação: 2013 Tipo de documento: Article