Your browser doesn't support javascript.
loading
Small angle X-ray scattering analysis of Clostridium thermocellum cellulosome N-terminal complexes reveals a highly dynamic structure.
Currie, Mark A; Cameron, Kate; Dias, Fernando M V; Spencer, Holly L; Bayer, Edward A; Fontes, Carlos M G A; Smith, Steven P; Jia, Zongchao.
Afiliação
  • Currie MA; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada.
  • Cameron K; Centro Interdisciplinar de Investigacao em Sanidade Animal, Faculdade de Medincina Veterinaria, Universidade Tecnica de Lisboa, 1300-477 Lisbon, Portugal.
  • Dias FMV; Centro Interdisciplinar de Investigacao em Sanidade Animal, Faculdade de Medincina Veterinaria, Universidade Tecnica de Lisboa, 1300-477 Lisbon, Portugal.
  • Spencer HL; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada.
  • Bayer EA; Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
  • Fontes CMGA; Centro Interdisciplinar de Investigacao em Sanidade Animal, Faculdade de Medincina Veterinaria, Universidade Tecnica de Lisboa, 1300-477 Lisbon, Portugal.
  • Smith SP; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada; Protein Function Discovery Group, Queen's University, Kingston, Ontario K7L 3N6, Canada. Electronic address: steven.smith@queensu.ca.
  • Jia Z; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada; Protein Function Discovery Group, Queen's University, Kingston, Ontario K7L 3N6, Canada. Electronic address: jia@queensu.ca.
J Biol Chem ; 288(11): 7978-7985, 2013 Mar 15.
Article em En | MEDLINE | ID: mdl-23341454
ABSTRACT
Clostridium thermocellum produces the prototypical cellulosome, a large multienzyme complex that efficiently hydrolyzes plant cell wall polysaccharides into fermentable sugars. This ability has garnered great interest in its potential application in biofuel production. The core non-catalytic scaffoldin subunit, CipA, bears nine type I cohesin modules that interact with the type I dockerin modules of secreted hydrolytic enzymes and promotes catalytic synergy. Because the large size and flexibility of the cellulosome preclude structural determination by traditional means, the structural basis of this synergy remains unclear. Small angle x-ray scattering has been successfully applied to the study of flexible proteins. Here, we used small angle x-ray scattering to determine the solution structure and to analyze the conformational flexibility of two overlapping N-terminal cellulosomal scaffoldin fragments comprising two type I cohesin modules and the cellulose-specific carbohydrate-binding module from CipA in complex with Cel8A cellulases. The pair distribution functions, ab initio envelopes, and rigid body models generated for these two complexes reveal extended structures. These two N-terminal cellulosomal fragments are highly dynamic and display no preference for extended or compact conformations. Overall, our work reveals structural and dynamic features of the N terminus of the CipA scaffoldin that may aid in cellulosome substrate recognition and binding.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Bactérias / Proteínas de Transporte / Celulase / Clostridium thermocellum / Complexos Multienzimáticos Idioma: En Ano de publicação: 2013 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Bactérias / Proteínas de Transporte / Celulase / Clostridium thermocellum / Complexos Multienzimáticos Idioma: En Ano de publicação: 2013 Tipo de documento: Article