Your browser doesn't support javascript.
loading
Uncoupling protein 2 deficiency mimics the effects of hypoxia and endoplasmic reticulum stress on mitochondria and triggers pseudohypoxic pulmonary vascular remodeling and pulmonary hypertension.
Dromparis, Peter; Paulin, Roxane; Sutendra, Gopinath; Qi, Andrew C; Bonnet, Sébastien; Michelakis, Evangelos D.
Afiliação
  • Dromparis P; Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada.
Circ Res ; 113(2): 126-36, 2013 Jul 05.
Article em En | MEDLINE | ID: mdl-23652801
ABSTRACT
RATIONALE Mitochondrial signaling regulates both the acute and the chronic response of the pulmonary circulation to hypoxia, and suppressed mitochondrial glucose oxidation contributes to the apoptosis-resistance and proliferative diathesis in the vascular remodeling in pulmonary hypertension. Hypoxia directly inhibits glucose oxidation, whereas endoplasmic reticulum (ER)-stress can indirectly inhibit glucose oxidation by decreasing mitochondrial calcium (Ca²âºm levels). Both hypoxia and ER stress promote proliferative pulmonary vascular remodeling. Uncoupling protein 2 (UCP2) has been shown to conduct calcium from the ER to mitochondria and suppress mitochondrial function.

OBJECTIVE:

We hypothesized that UCP2 deficiency reduces Ca²âºm in pulmonary artery smooth muscle cells (PASMCs), mimicking the effects of hypoxia and ER stress on mitochondria in vitro and in vivo, promoting normoxic hypoxia inducible factor-1α activation and pulmonary hypertension. METHODS AND

RESULTS:

Ucp2 knockout (KO)-PASMCs had lower mitochondrial calcium than Ucp2 wildtype (WT)-PASMCs at baseline and during histamine-stimulated ER-Ca²âº release. Normoxic Ucp2KO-PASMCs had mitochondrial hyperpolarization, lower Ca²âº-sensitive mitochondrial enzyme activity, reduced levels of mitochondrial reactive oxygen species and Krebs' cycle intermediates, and increased resistance to apoptosis, mimicking the hypoxia-induced changes in Ucp2WT-PASMC. Ucp2KO mice spontaneously developed pulmonary vascular remodeling and pulmonary hypertension and exhibited a pseudohypoxic state with pulmonary vascular and systemic hypoxia inducible factor-1α activation (increased hematocrit), not exacerbated further by chronic hypoxia.

CONCLUSIONS:

This first description of the role of UCP2 in oxygen sensing and in pulmonary hypertension vascular remodeling may open a new window in biomarker and therapeutic strategies.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Artéria Pulmonar / Proteínas Mitocondriais / Estresse do Retículo Endoplasmático / Hipertensão Pulmonar / Canais Iônicos / Hipóxia / Mitocôndrias Limite: Animals Idioma: En Ano de publicação: 2013 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Artéria Pulmonar / Proteínas Mitocondriais / Estresse do Retículo Endoplasmático / Hipertensão Pulmonar / Canais Iônicos / Hipóxia / Mitocôndrias Limite: Animals Idioma: En Ano de publicação: 2013 Tipo de documento: Article