Your browser doesn't support javascript.
loading
Volume crossover in deeply supercooled water adiabatically freezing under isobaric conditions.
Aliotta, Francesco; Giaquinta, Paolo V; Pochylski, Mikolaj; Ponterio, Rosina C; Prestipino, Santi; Saija, Franz; Vasi, Cirino.
Afiliação
  • Aliotta F; CNR-Istituto per i Processi Chimico - Fisici, Viale Ferdinando Stagno d'Alcontres 37, I-98158 Messina, Italy.
J Chem Phys ; 138(18): 184504, 2013 May 14.
Article em En | MEDLINE | ID: mdl-23676053
ABSTRACT
The irreversible return of a supercooled liquid to stable thermodynamic equilibrium often begins as a fast process which adiabatically drives the system to solid-liquid coexistence. Only at a later stage will solidification proceed with the expected exchange of thermal energy with the external bath. In this paper we discuss some aspects of the adiabatic freezing of metastable water at constant pressure. In particular, we investigated the thermal behavior of the isobaric gap between the molar volume of supercooled water and that of the warmer ice-water mixture which eventually forms at equilibrium. The available experimental data at ambient pressure, extrapolated into the metastable region within the scheme provided by the reference IAPWS-95 formulation, show that water ordinarily expands upon (partially) freezing under isenthalpic conditions. However, the same scheme also suggests that, for increasing undercoolings, the volume gap is gradually reduced and eventually vanishes at a temperature close to the currently estimated homogeneous ice nucleation temperature. This behavior is contrasted with that of substances which do not display a volumetric anomaly. The effect of increasing pressures on the alleged volume crossover from an expanded to a contracted ice-water mixture is also discussed.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Termodinâmica / Água Idioma: En Ano de publicação: 2013 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Termodinâmica / Água Idioma: En Ano de publicação: 2013 Tipo de documento: Article