Your browser doesn't support javascript.
loading
DNA methylation impacts gene expression and ensures hypoxic survival of Mycobacterium tuberculosis.
Shell, Scarlet S; Prestwich, Erin G; Baek, Seung-Hun; Shah, Rupal R; Sassetti, Christopher M; Dedon, Peter C; Fortune, Sarah M.
Afiliação
  • Shell SS; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America.
PLoS Pathog ; 9(7): e1003419, 2013.
Article em En | MEDLINE | ID: mdl-23853579
ABSTRACT
DNA methylation regulates gene expression in many organisms. In eukaryotes, DNA methylation is associated with gene repression, while it exerts both activating and repressive effects in the Proteobacteria through largely locus-specific mechanisms. Here, we identify a critical DNA methyltransferase in M. tuberculosis, which we term MamA. MamA creates N6-methyladenine in a six base pair recognition sequence present in approximately 2,000 copies on each strand of the genome. Loss of MamA reduces the expression of a number of genes. Each has a MamA site located at a conserved position relative to the sigma factor -10 binding site and transcriptional start site, suggesting that MamA modulates their expression through a shared, not locus-specific, mechanism. While strains lacking MamA grow normally in vitro, they are attenuated in hypoxic conditions, suggesting that methylation promotes survival in discrete host microenvironments. Interestingly, we demonstrate strikingly different patterns of DNA methyltransferase activity in different lineages of M. tuberculosis, which have been associated with preferences for distinct host environments and different disease courses in humans. Thus, MamA is the major functional adenine methyltransferase in M. tuberculosis strains of the Euro-American lineage while strains of the Beijing lineage harbor a point mutation that largely inactivates MamA but possess a second functional DNA methyltransferase. Our results indicate that MamA influences gene expression in M. tuberculosis and plays an important but strain-specific role in fitness during hypoxia.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Bactérias / DNA Bacteriano / DNA Metiltransferases Sítio Específica (Adenina-Específica) / Regulação Bacteriana da Expressão Gênica / Metilação de DNA / Mycobacterium tuberculosis Tipo de estudo: Prognostic_studies Limite: Animals / Female / Humans Idioma: En Ano de publicação: 2013 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Bactérias / DNA Bacteriano / DNA Metiltransferases Sítio Específica (Adenina-Específica) / Regulação Bacteriana da Expressão Gênica / Metilação de DNA / Mycobacterium tuberculosis Tipo de estudo: Prognostic_studies Limite: Animals / Female / Humans Idioma: En Ano de publicação: 2013 Tipo de documento: Article