Your browser doesn't support javascript.
loading
Optimizing the thermal read-out technique for MIP-based biomimetic sensors: towards nanomolar detection limits.
Geerets, Bram; Peeters, Marloes; van Grinsven, Bart; Bers, Karolien; de Ceuninck, Ward; Wagner, Patrick.
Afiliação
  • Geerets B; Institute for Materials Research, Hasselt University, Diepenbeek, Belgium. bram.geerets@student.uhasselt.be
Sensors (Basel) ; 13(7): 9148-59, 2013 Jul 16.
Article em En | MEDLINE | ID: mdl-23863857
ABSTRACT
In previous work, the novel heat-transfer method (HTM) for the detection of small molecules with Molecularly Imprinted Polymers (MIP)-type receptors was presented. In this study we focus on optimization of this sensor performance, with as final aim to lower the detection limit by reducing the noise level. It was determined that the noise originates foremost from the power supply, which can be controlled by varying the PID parameters. Therefore, the effect of the individual parameters was evaluated by tuning P, I and D separately at a temperature of 37 °C, giving a first indication of the optimal configuration. Next, a temperature profile was programmed and the standard deviation of the heat-transfer resistance over the entire regime was studied for a set of parameters. The optimal configuration, P1-I6-D0, reduced the noise level with nearly a factor of three compared to the original parameters of P10-I5-D0. With the optimized settings, the detection of L-nicotine in buffer solutions was studied and the detection limit improved significantly from 100 nM to 35 nM. Summarizing, optimization of the PID parameters and thereby improving the detection limit is a key parameter for first applications of the HTM-method for MIP receptors in analytical research.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Transdutores / Imunoensaio / Artefatos / Nanotecnologia / Biomimética / Impressão Molecular / Microquímica Tipo de estudo: Diagnostic_studies Idioma: En Ano de publicação: 2013 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Transdutores / Imunoensaio / Artefatos / Nanotecnologia / Biomimética / Impressão Molecular / Microquímica Tipo de estudo: Diagnostic_studies Idioma: En Ano de publicação: 2013 Tipo de documento: Article