Your browser doesn't support javascript.
loading
A non-parametric permutation method for assessing agreement for distance matrix observations.
Røislien, Jo; Samset, Eigil.
Afiliação
  • Røislien J; Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Norway.
Stat Med ; 33(2): 319-29, 2014 Jan 30.
Article em En | MEDLINE | ID: mdl-23946159
Distance matrix data are occurring ever more frequently in medical research, particularly in fields such as genetics, DNA research, and image analysis. We propose a non-parametric permutation method for assessing agreement when the data under study are distance matrices. We apply agglomerative hierarchical clustering and accompanying dendrograms to visualize the internal structure of the matrix observations. The accompanying test is based on random permutations of the elements within individual matrix observations and the corresponding matrix mean of these permutations. We compare the within-matrix element sum of squares (WMESS) for the observed mean against the WMESS for the permutation means. The methodology is exemplified using simulations and real data from magnetic resonance imaging.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Análise por Conglomerados / Interpretação Estatística de Dados / Fígado Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Análise por Conglomerados / Interpretação Estatística de Dados / Fígado Idioma: En Ano de publicação: 2014 Tipo de documento: Article