Your browser doesn't support javascript.
loading
BMP9 ameliorates amyloidosis and the cholinergic defect in a mouse model of Alzheimer's disease.
Burke, Rebecca M; Norman, Timothy A; Haydar, Tarik F; Slack, Barbara E; Leeman, Susan E; Blusztajn, Jan Krzysztof; Mellott, Tiffany J.
Afiliação
  • Burke RM; Department of Pathology and Laboratory Medicine, Department of Anatomy and Neurobiology, and Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118.
Proc Natl Acad Sci U S A ; 110(48): 19567-72, 2013 Nov 26.
Article em En | MEDLINE | ID: mdl-24218590
ABSTRACT
Bone morphogenetic protein 9 (BMP9) promotes the acquisition of the cholinergic phenotype in basal forebrain cholinergic neurons (BFCN) during development and protects these neurons from cholinergic dedifferentiation following axotomy when administered in vivo. A decline in BFCN function occurs in patients with Alzheimer's disease (AD) and contributes to the AD-associated memory deficits. We infused BMP9 intracerebroventricularly for 7 d in transgenic AD model mice expressing green fluorescent protein specifically in cholinergic neurons (APP.PS1/CHGFP) and in wild-type littermate controls (WT/CHGFP). We used 5-mo-old mice, an age when the AD transgenics display early amyloid deposition and few cholinergic defects, and 10-mo-old mice, by which time these mice exhibit established disease. BMP9 infusion reduced the number of Aß42-positive amyloid plaques in the hippocampus and cerebral cortex of 5- and 10-mo-old APP.PS1/CHGFP mice and reversed the reductions in choline acetyltransferase protein levels in the hippocampus of 10-mo-old APP.PS1/CHGFP mice. The treatment increased cholinergic fiber density in the hippocampus of both WT/CHGFP and APP.PS1/CHGFP mice at both ages. BMP9 infusion also increased hippocampal levels of neurotrophin 3, insulin-like growth factor 1, and nerve growth factor and of the nerve growth factor receptors, tyrosine kinase receptor A and p75/NGFR, irrespective of the genotype of the mice. These data show that BMP9 administration is effective in reducing the Aß42 amyloid plaque burden, reversing cholinergic neuron abnormalities, and generating a neurotrophic milieu for BFCN in a mouse model of AD and provide evidence that the BMP9-signaling pathway may constitute a therapeutic target for AD.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fator 2 de Diferenciação de Crescimento / Neurônios Colinérgicos / Doença de Alzheimer / Amiloidose Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2013 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fator 2 de Diferenciação de Crescimento / Neurônios Colinérgicos / Doença de Alzheimer / Amiloidose Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2013 Tipo de documento: Article