Your browser doesn't support javascript.
loading
High-density two-dimensional small polaron gas in a delta-doped Mott insulator.
Ouellette, Daniel G; Moetakef, Pouya; Cain, Tyler A; Zhang, Jack Y; Stemmer, Susanne; Emin, David; Allen, S James.
Afiliação
  • Ouellette DG; Department of Physics, University of California, Santa Barbara, California.
Sci Rep ; 3: 3284, 2013 Nov 21.
Article em En | MEDLINE | ID: mdl-24257578
Heterointerfaces in complex oxide systems open new arenas in which to test models of strongly correlated material, explore the role of dimensionality in metal-insulator-transitions (MITs) and small polaron formation. Close to the quantum critical point Mott MITs depend on band filling controlled by random disordered substitutional doping. Delta-doped Mott insulators are potentially free of random disorder and introduce a new arena in which to explore the effect of electron correlations and dimensionality. Epitaxial films of the prototypical Mott insulator GdTiO3 are delta-doped by substituting a single (GdO)(+1) plane with a monolayer of charge neutral SrO to produce a two-dimensional system with high planar doping density. Unlike metallic SrTiO3 quantum wells in GdTiO3 the single SrO delta-doped layer exhibits thermally activated DC and optical conductivity that agree in a quantitative manner with predictions of small polaron transport but with an extremely high two-dimensional density of polarons, ~7 × 10(14) cm(-2).

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2013 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2013 Tipo de documento: Article