Your browser doesn't support javascript.
loading
Cellularized cylindrical fiber/hydrogel composites for ligament tissue engineering.
Thayer, Patrick S; Dimling, Anna F; Plessl, Daniel S; Hahn, Mariah R; Guelcher, Scott A; Dahlgren, Linda A; Goldstein, Aaron S.
Afiliação
  • Thayer PS; School of Biomedical Engineering and Sciences, ‡Department of Chemical Engineering, and #Department of Large Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech , Blacksburg, Virginia, United States.
Biomacromolecules ; 15(1): 75-83, 2014 Jan 13.
Article em En | MEDLINE | ID: mdl-24266805
ABSTRACT
Electrospun meshes suffer from poor cell infiltration and limited thickness, which restrict their use to thin tissue applications. Herein, we demonstrate two complementary processes to overcome these limitations and achieve elastomeric composites that may be suitable for ligament repair. First, C3H10T1/2 mesenchymal stem cells were incorporated into electrospun meshes using a hybrid electrospinning/electrospraying process. Second, electrospun meshes were rolled and formed into composites with an interpenetrating polyethylene glycol (PEG) hydrogel network. Stiffer composites were formed from poly(lactic-co-glycolic acid) (PLGA) meshes, while softer and more elastic composites were formed from poly(ester-urethane urea) (PEUUR) meshes. As-spun PLGA and PEUUR rolled meshes had tensile moduli of 19.2 ± 1.9 and 0.86 ± 0.34 MPa, respectively, which changed to 11.6 ± 4.8 and 1.05 ± 0.39 MPa with the incorporation of a PEG hydrogel phase. In addition, cyclic tensile testing indicated that PEUUR-based composites deformed elastically to at least 10%. Finally, C3H10T1/2 cells incorporated into electrospun meshes survived the addition of the PEG phase and remained viable for up to 5 days. These results indicate that the fabricated cellularized composites are support cyclic mechanical conditioning, and have potential application in ligament repair.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Hidrogel de Polietilenoglicol-Dimetacrilato / Engenharia Tecidual / Células-Tronco Mesenquimais / Ligamentos Limite: Animals Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Hidrogel de Polietilenoglicol-Dimetacrilato / Engenharia Tecidual / Células-Tronco Mesenquimais / Ligamentos Limite: Animals Idioma: En Ano de publicação: 2014 Tipo de documento: Article