Your browser doesn't support javascript.
loading
Identification, modeling and ligand affinity of early deuterostome CYP51s, and functional characterization of recombinant zebrafish sterol 14α-demethylase.
Morrison, Ann Michelle Stanley; Goldstone, Jared V; Lamb, David C; Kubota, Akira; Lemaire, Benjamin; Stegeman, John J.
Afiliação
  • Morrison AM; Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; School of Public Health, Harvard University, Boston, MA 02115, USA.
  • Goldstone JV; Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
  • Lamb DC; Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; Institute of Life Science, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
  • Kubota A; Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
  • Lemaire B; Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
  • Stegeman JJ; Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA. Electronic address: jstegeman@whoi.edu.
Biochim Biophys Acta ; 1840(6): 1825-36, 2014 Jun.
Article em En | MEDLINE | ID: mdl-24361620
ABSTRACT

BACKGROUND:

Sterol 14α-demethylase (cytochrome P450 51, CYP51, P45014DM) is a microsomal enzyme that in eukaryotes catalyzes formation of sterols essential for cell membrane function and as precursors in biosynthesis of steroid hormones. Functional properties of CYP51s are unknown in non-mammalian deuterostomes.

METHODS:

PCR-cloning and sequencing and computational analyses (homology modeling and docking) addressed CYP51 in zebrafish Danio rerio, the reef fish sergeant major Abudefduf saxatilis, and the sea urchin Strongylocentrotus purpuratus. Following N-terminal amino acid modification, zebrafish CYP51 was expressed in Escherichia coli, and lanosterol 14α-demethylase activity and azole inhibition of CYP51 activity were characterized using GC-MS.

RESULTS:

Molecular phylogeny positioned S. purpuratus CYP51 at the base of the deuterostome clade. In zebrafish, CYP51 is expressed in all organs examined, most strongly in intestine. The recombinant protein bound lanosterol and catalyzed 14α-demethylase activity, at 3.2nmol/min/nmol CYP51. The binding of azoles to zebrafish CYP51 gave KS (dissociation constant) values of 0.26µM for ketoconazole and 0.64µM for propiconazole. Displacement of carbon monoxide also indicated zebrafish CYP51 has greater affinity for ketoconazole. Docking to homology models showed that lanosterol docks in fish and sea urchin CYP51s with an orientation essentially the same as in mammalian CYP51s. Docking of ketoconazole indicates it would inhibit fish and sea urchin CYP51s.

CONCLUSIONS:

Biochemical and computational analyses are consistent with lanosterol being a substrate for early deuterostome CYP51s. GENERAL

SIGNIFICANCE:

The results expand the phylogenetic view of animal CYP51, with evolutionary, environmental and therapeutic implications.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Recombinantes / Esterol 14-Desmetilase Tipo de estudo: Diagnostic_studies Limite: Animals / Female / Humans / Male Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Recombinantes / Esterol 14-Desmetilase Tipo de estudo: Diagnostic_studies Limite: Animals / Female / Humans / Male Idioma: En Ano de publicação: 2014 Tipo de documento: Article