Your browser doesn't support javascript.
loading
Environmental enrichment extends ocular dominance plasticity into adulthood and protects from stroke-induced impairments of plasticity.
Greifzu, Franziska; Pielecka-Fortuna, Justyna; Kalogeraki, Evgenia; Krempler, Katja; Favaro, Plinio D; Schlüter, Oliver M; Löwel, Siegrid.
Afiliação
  • Greifzu F; Systems Neuroscience, Bernstein Fokus Neurotechnologie, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität, D-37075 Göttingen, Germany.
Proc Natl Acad Sci U S A ; 111(3): 1150-5, 2014 Jan 21.
Article em En | MEDLINE | ID: mdl-24395770
Ocular dominance (OD) plasticity in mouse primary visual cortex (V1) declines during postnatal development and is absent beyond postnatal day 110 if mice are raised in standard cages (SCs). An enriched environment (EE) promotes OD plasticity in adult rats. Here, we explored cellular mechanisms of EE in mouse V1 and the therapeutic potential of EE to prevent impairments of plasticity after a cortical stroke. Using in vivo optical imaging, we observed that monocular deprivation in adult EE mice (i) caused a very strong OD plasticity previously only observed in 4-wk-old animals, (ii) restored already lost OD plasticity in adult SC-raised mice, and (iii) preserved OD plasticity after a stroke in the primary somatosensory cortex. Using patch-clamp electrophysiology in vitro, we also show that (iv) local inhibition was significantly reduced in V1 slices of adult EE mice and (v) the GABA/AMPA ratio was like that in 4-wk-old SC-raised animals. These observations were corroborated by in vivo analyses showing that diazepam treatment significantly reduced the OD shift of EE mice after monocular deprivation. Taken together, EE extended the sensitive phase for OD plasticity into late adulthood, rejuvenated V1 after 4 mo of SC-rearing, and protected adult mice from stroke-induced impairments of cortical plasticity. The EE effect was mediated most likely by preserving low juvenile levels of inhibition into adulthood, which potentially promoted adaptive changes in cortical circuits.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Acidente Vascular Cerebral / Dominância Ocular / Plasticidade Neuronal Limite: Animals Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Acidente Vascular Cerebral / Dominância Ocular / Plasticidade Neuronal Limite: Animals Idioma: En Ano de publicação: 2014 Tipo de documento: Article