Your browser doesn't support javascript.
loading
Application of machine learning techniques to analyse the effects of physical exercise in ventricular fibrillation.
Caravaca, Juan; Soria-Olivas, Emilio; Bataller, Manuel; Serrano, Antonio J; Such-Miquel, Luis; Vila-Francés, Joan; Guerrero, Juan F.
Afiliação
  • Caravaca J; Digital Signal Processing Group, ETSE, Universitat de València, Avda Universitat S/N, Burjassot, València 46100, Spain. Electronic address: caravaca.juan@gmail.com.
  • Soria-Olivas E; Intelligent Data Analysis Laboratory, ETSE, Universitat de València, Avda Universitat S/N, Burjassot, València 46100, Spain.
  • Bataller M; Digital Signal Processing Group, ETSE, Universitat de València, Avda Universitat S/N, Burjassot, València 46100, Spain.
  • Serrano AJ; Intelligent Data Analysis Laboratory, ETSE, Universitat de València, Avda Universitat S/N, Burjassot, València 46100, Spain.
  • Such-Miquel L; Department of Physiotherapy, Universitat de València and INCLIVA, València, Spain.
  • Vila-Francés J; Intelligent Data Analysis Laboratory, ETSE, Universitat de València, Avda Universitat S/N, Burjassot, València 46100, Spain.
  • Guerrero JF; Digital Signal Processing Group, ETSE, Universitat de València, Avda Universitat S/N, Burjassot, València 46100, Spain.
Comput Biol Med ; 45: 1-7, 2014 Feb.
Article em En | MEDLINE | ID: mdl-24480157
This work presents the application of machine learning techniques to analyse the influence of physical exercise in the physiological properties of the heart, during ventricular fibrillation. To this end, different kinds of classifiers (linear and neural models) are used to classify between trained and sedentary rabbit hearts. The use of those classifiers in combination with a wrapper feature selection algorithm allows to extract knowledge about the most relevant features in the problem. The obtained results show that neural models outperform linear classifiers (better performance indices and a better dimensionality reduction). The most relevant features to describe the benefits of physical exercise are those related to myocardial heterogeneity, mean activation rate and activation complexity.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Condicionamento Físico Animal / Fibrilação Ventricular / Processamento de Sinais Assistido por Computador / Aptidão Física Limite: Animals Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Condicionamento Físico Animal / Fibrilação Ventricular / Processamento de Sinais Assistido por Computador / Aptidão Física Limite: Animals Idioma: En Ano de publicação: 2014 Tipo de documento: Article