Type 2 diabetes induces subendocardium-predominant reduction in transient outward K+ current with downregulation of Kv4.2 and KChIP2.
Am J Physiol Heart Circ Physiol
; 306(7): H1054-65, 2014 Apr 01.
Article
em En
| MEDLINE
| ID: mdl-24486512
In the present study, we examined if and how cardiac ion channels are modified by type 2 diabetes mellitus (T2DM). Subendocardial (Endo) myocytes and subepicardial (Epi) myocytes were isolated from left ventricles of Otsuka-Long-Evans-Tokushima Fatty rats (OLETF) rats, a rat model of T2DM, and Otsuka-Long-Evans-Tokushima (LETO) rats (nondiabetic control rats). Endo and Epi myocytes were used for whole cell patch-clamp recordings and for protein and mRNA analyses. Action potential durations in Endo and Epi myocytes were longer in OLETF rats than in LETO rats, and the difference was larger in Endo myocytes. Steady-state transient outward K+ current (Ito) density was reduced in Endo but not Epi myocytes of OLETF rats compared with LETO rats, although the contribution of the fast component of Ito recovery from inactivation was smaller in both Endo and Epi myocytes of OLETF rats than in LETO rats. Kv4.2 protein was reduced only in Endo myocytes in OLETF rats, although voltage-gated K+ channel-interacting protein 2 (KChIP2) protein levels in both Endo and Epi myocytes were lower in OLETF rats than in LETO rats. Corresponding regional differences in mRNA levels of KChIP2 and Kv4.2 were observed between OLETF and LETO rats. mRNA levels of Iroquois homeobox 5 in Endo myocytes were 53% higher in OLETF rats than in LETO rats. Densities of inward rectifier K+ current and L-type Ca2+ current and mRNA levels of Kv4.3 and Kv1.4 were similar in OLETF and LETO rats. In conclusion, T2DM induces Endo-predominant prolongation of the action potential duration via a reduction of the fast component of Ito recovery from inactivation and reduced steady-state Ito, in which downregulation of Kv4.2 and KChIP2 may be involved. Increased Iroquois homeobox 5 expression may underlie Kv4.2 downregulation in T2DM.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Potássio
/
Miócitos Cardíacos
/
Diabetes Mellitus Tipo 2
/
Proteínas Interatuantes com Canais de Kv
/
Canais de Potássio Shal
/
Cardiomiopatias Diabéticas
Tipo de estudo:
Prognostic_studies
Limite:
Animals
Idioma:
En
Ano de publicação:
2014
Tipo de documento:
Article