Your browser doesn't support javascript.
loading
Microbial ecology of chlorinated solvent biodegradation.
David, Maude M; Cecillon, Sebastien; Warne, Brett M; Prestat, Emmanuel; Jansson, Janet K; Vogel, Timothy M.
Afiliação
  • David MM; Environmental Microbial Genomics group, Laboratoire Ampère, CNRS UMR 5005, Ecole Centrale de Lyon, Université de Lyon, 36 avenue Guy de Collongue, Ecully, 69134, France.
  • Cecillon S; Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Warne BM; Environmental Microbial Genomics group, Laboratoire Ampère, CNRS UMR 5005, Ecole Centrale de Lyon, Université de Lyon, 36 avenue Guy de Collongue, Ecully, 69134, France.
  • Prestat E; Massachussets Institute of Technology, Cambridge, MA, USA.
  • Jansson JK; Environmental Microbial Genomics group, Laboratoire Ampère, CNRS UMR 5005, Ecole Centrale de Lyon, Université de Lyon, 36 avenue Guy de Collongue, Ecully, 69134, France.
  • Vogel TM; Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
Environ Microbiol ; 17(12): 4835-50, 2015 Dec.
Article em En | MEDLINE | ID: mdl-24517489
ABSTRACT
This study focused on the microbial ecology of tetrachloroethene (PCE) degradation to trichloroethene, cis-1,2-dichloroethene and vinyl chloride to evaluate the relationship between the microbial community and the potential accumulation or degradation of these toxic metabolites. Multiple soil microcosms supplied with different organic substrates were artificially contaminated with PCE. A thymidine analogue, bromodeoxyuridine (BrdU), was added to the microcosms and incorporated into the DNA of actively replicating cells. We compared the total and active bacterial communities during the 50-day incubations by using phylogenic microarrays and 454 pyrosequencing to identify microorganisms and functional genes associated with PCE degradation to ethene. By use of this integrative approach, both the key community members and the ecological functions concomitant with complete PCE degradation could be determined, including the presence and activity of microbial community members responsible for producing hydrogen and acetate, which are critical for Dehalococcoides-mediated PCE degradation. In addition, by correlation of chemical data and phylogenic microarray data, we identified several bacteria that could potentially oxidize hydrogen. These results demonstrate that PCE degradation is dependent on some microbial community members for production of appropriate metabolites, while other members of the community compete for hydrogen in soil at low redox potentials.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Solventes / Tetracloroetileno / Poluentes Químicos da Água / Biodegradação Ambiental / Chloroflexi Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Solventes / Tetracloroetileno / Poluentes Químicos da Água / Biodegradação Ambiental / Chloroflexi Idioma: En Ano de publicação: 2015 Tipo de documento: Article