Your browser doesn't support javascript.
loading
Upper limb recovery after stroke is associated with ipsilesional primary motor cortical activity: a meta-analysis.
Favre, Isabelle; Zeffiro, Thomas A; Detante, Olivier; Krainik, Alexandre; Hommel, Marc; Jaillard, Assia.
Afiliação
  • Favre I; From the Unité Neurovasculaire, Pôle Psychiatrie-Neurologie (I.F., O.D.), Unité IRM, Pôle Radiologie (A.K.), Unité IRM 3T Recherche IRMaGe - Inserm US17/CNRS UMS 3552 (A.K., A.J.), and Pôle Recherche (M.H., A.J.), CHU de Grenoble, Grenoble, France; and Neural Systems Group, Massachusetts General Hospital, Charlestown (T.A.Z.).
Stroke ; 45(4): 1077-83, 2014 Apr.
Article em En | MEDLINE | ID: mdl-24525953
BACKGROUND AND PURPOSE: Although neuroimaging studies have revealed specific patterns of reorganization in the sensorimotor control network after stroke, their role in recovery remains unsettled. To review the existing evidence systematically, we performed activation likelihood estimation meta-analysis of functional neuroimaging studies investigating upper limb movement-related brain activity after stroke. METHODS: Twenty-four studies using sensorimotor tasks in standardized coordinates were included, totaling 255 patients and 145 healthy controls. Across the entire brain, we compared task-related activity patterns in good and poor recovery and assessed the magnitude of spatial shifts in sensorimotor activity in cortical motor areas after stroke. RESULTS: When compared with healthy controls, patients showed higher activation likelihood estimation values in contralesional primary motor soon after stroke that abated with time, but were not related to motor outcome. The observed activity changes were consistent with restoration of typical interhemispheric balance. In contrast, activation likelihood estimation values in ipsilesional medial-premotor and primary motor cortex were associated with good outcome, reorganization that may reflect vicarious processes associated with ventral activity shifts from BA4a to 4p. In the anterior cerebellum, a novel finding was the association of poor recovery with increased vermal activity, possibly reflecting behaviorally inadequate compensatory strategies engaging the fastigio-thalamo-cortical and corticoreticulospinal systems. CONCLUSIONS: Activity in ipsilesional primary motor and medial-premotor cortices in chronic stroke signals good motor recovery, whereas cerebellar vermis activity signals poor recovery. Functional MRI may be useful in identifying recovery biomarkers.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Braço / Recuperação de Função Fisiológica / Acidente Vascular Cerebral / Córtex Motor / Transtornos dos Movimentos Tipo de estudo: Prognostic_studies / Risk_factors_studies / Systematic_reviews Limite: Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Braço / Recuperação de Função Fisiológica / Acidente Vascular Cerebral / Córtex Motor / Transtornos dos Movimentos Tipo de estudo: Prognostic_studies / Risk_factors_studies / Systematic_reviews Limite: Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2014 Tipo de documento: Article