Your browser doesn't support javascript.
loading
PEG-detachable lipid-polymer hybrid nanoparticle for delivery of chemotherapy drugs to cancer cells.
Du, Jiang-bo; Song, Yan-feng; Ye, Wei-liang; Cheng, Ying; Cui, Han; Liu, Dao-zhou; Liu, Miao; Zhang, Bang-le; Zhou, Si-yuan.
Afiliação
  • Du JB; Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China.
Anticancer Drugs ; 25(7): 751-66, 2014 Aug.
Article em En | MEDLINE | ID: mdl-24590167
ABSTRACT
The experiment aimed to increase the drug-delivery efficiency of poly-lactic-co-glycolic acid (PLGA) nanoparticles. Lipid-polymer hybrid nanoparticles (LPNs-1) were prepared using PLGA as a hydrophobic core and FA-PEG-hyd-DSPE as an amphiphilic shell. Uniform and spherical nanoparticles with an average size of 185 nm were obtained using the emulsification solvent evaporation method. The results indicated that LPNs-1 showed higher drug loading compared with naked PLGA nanoparticles (NNPs). Drug release from LPNs-1 was faster in an acidic environment than in a neutral environment. LPNs-1 showed higher cytotoxicity on KB cells, A549 cells, MDA-MB-231 cells, and MDA-MB-231/ADR cells compared with free doxorubicin (DOX) and NNPs. The results also showed that, compared with free DOX and NNPs, LPNs-1 delivered more DOX to the nuclear of KB cells and MDA-MB-231/ADR cells. LPNs-1 induced apoptosis in KB cells and MDA-MB-231/ADR cells in a dose-dependent manner. The above data indicated that DOX-loaded LPNs-1 could kill not only normal tumor cells but also drug-resistant tumor cells. These results indicated that modification of PLGA nanoparticles with FA-PEG-hyd-DSPE could considerably increase the drug-delivery efficiency and LPNs-1 had potential in the delivery of chemotherapeutic agents in the treatment of cancer.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fosfatidilcolinas / Polietilenoglicóis / Nanopartículas / Ácido Fólico / Antineoplásicos Limite: Humans Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fosfatidilcolinas / Polietilenoglicóis / Nanopartículas / Ácido Fólico / Antineoplásicos Limite: Humans Idioma: En Ano de publicação: 2014 Tipo de documento: Article