Your browser doesn't support javascript.
loading
Mst1 and mst2 are essential regulators of trophoblast differentiation and placenta morphogenesis.
Du, Xingrong; Dong, Yongli; Shi, Hao; Li, Jiang; Kong, Shanshan; Shi, Donghua; Sun, Ling V; Xu, Tian; Deng, Kejing; Tao, Wufan.
Afiliação
  • Du X; State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China.
  • Dong Y; State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China.
  • Shi H; State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China.
  • Li J; State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China.
  • Kong S; State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China.
  • Shi D; State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China.
  • Sun LV; State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China.
  • Xu T; State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China; Howard Hughes Medical Institute, Department of Genetics, Yale
  • Deng K; State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China.
  • Tao W; State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China.
PLoS One ; 9(3): e90701, 2014.
Article em En | MEDLINE | ID: mdl-24595170
ABSTRACT
The placenta is essential for survival and growth of the fetus because it promotes the delivery of nutrients and oxygen from the maternal circulation as well as fetal waste disposal. Mst1 and Mst2 (Mst1/2), key components of the mammalian hpo/Mst signaling pathway, encode two highly conserved Ser/Thr kinases and play important roles in the prevention of tumorigenesis and autoimmunity, control of T cell development and trafficking, and embryonic development. However, their functions in placental development are not fully understood, and the underlying cellular and molecular mechanisms remain elusive. Here, we investigated the functions of Mst1/2 in mouse placental development using both conventional and conditional (endothelial) Mst1/2 double knockout mice. We found that the number of trophoblast giant cells dramatically increased while spongiotrophoblast cells almost completely disappeared in Mst1/2 deficient placentas. We showed that Mst1/2 deficiency down regulated the expression of Mash2, which is required for suppressing the differentiation of trophoblast giant cells. Furthermore, we demonstrated that endothelial-specific deletion of Mst1/2 led to impaired placental labyrinthine vasculature and embryonic lethality at E11.5, but neither affected vasculature in yolk sac and embryo proper nor endocardium development. Collectively, our findings suggest that Mst1/2 regulate placental development by control of trophoblast cell differentiation and labyrinthine vasculature at midgestation and Mst1/2 control labyrinth morphogenesis in trophoblast- and fetal endothelial-dependent manners. Thus, our studies have defined novel roles of Mst1/2 in mouse placental development.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Placentação / Trofoblastos / Proteínas Serina-Treonina Quinases Limite: Animals / Pregnancy Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Placentação / Trofoblastos / Proteínas Serina-Treonina Quinases Limite: Animals / Pregnancy Idioma: En Ano de publicação: 2014 Tipo de documento: Article