Your browser doesn't support javascript.
loading
Chimeric rat/human HER2 efficiently circumvents HER2 tolerance in cancer patients.
Occhipinti, Sergio; Sponton, Laura; Rolla, Simona; Caorsi, Cristiana; Novarino, Anna; Donadio, Michela; Bustreo, Sara; Satolli, Maria Antonietta; Pecchioni, Carla; Marchini, Cristina; Amici, Augusto; Cavallo, Federica; Cappello, Paola; Pierobon, Daniele; Novelli, Francesco; Giovarelli, Mirella.
Afiliação
  • Occhipinti S; Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città
  • Sponton L; Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città
  • Rolla S; Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città
  • Caorsi C; Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città
  • Novarino A; Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città
  • Donadio M; Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città
  • Bustreo S; Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città
  • Satolli MA; Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città
  • Pecchioni C; Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città
  • Marchini C; Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città
  • Amici A; Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città
  • Cavallo F; Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città
  • Cappello P; Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città
  • Pierobon D; Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città
  • Novelli F; Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città
  • Giovarelli M; Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città
Clin Cancer Res ; 20(11): 2910-21, 2014 Jun 01.
Article em En | MEDLINE | ID: mdl-24668647
ABSTRACT

PURPOSE:

Despite the great success of HER2 vaccine strategies in animal models, effective clinical results have not yet been obtained. We studied the feasibility of using DNA coding for chimeric rat/human HER2 as a tool to break the unresponsiveness of T cells from patients with HER2-overexpressing tumors (HER2-CP). EXPERIMENTAL

DESIGN:

Dendritic cells (DCs) generated from patients with HER2-overexpressing breast (n = 28) and pancreatic (n = 16) cancer were transfected with DNA plasmids that express human HER2 or heterologous rat sequences in separate plasmids or as chimeric constructs encoding rat/human HER2 fusion proteins and used to activate autologous T cells. Activation was evaluated by IFN-γ ELISPOT assay, perforin expression, and ability to halt HER2+ tumor growth in vivo.

RESULTS:

Specific sustained proliferation and IFN-γ production by CD4 and CD8 T cells from HER2-CP was observed after stimulation with autologous DCs transfected with chimeric rat/human HER2 plasmids. Instead, T cells from healthy donors (n = 22) could be easily stimulated with autologous DCs transfected with any human, rat, or chimeric rat/human HER2 plasmid. Chimeric HER2-transfected DCs from HER2-CP were also able to induce a sustained T-cell response that significantly hindered the in vivo growth of HER2(+) tumors. The efficacy of chimeric plasmids in overcoming tumor-induced T-cell dysfunction relies on their ability to circumvent suppressor effects exerted by regulatory T cells (Treg) and/or interleukin (IL)-10 and TGF-ß1.

CONCLUSIONS:

These results provide the proof of concept that chimeric rat/human HER2 plasmids can be used as effective vaccines for any HER2-CP with the advantage of being not limited to specific MHC. Clin Cancer Res; 20(11); 2910-21. ©2014 AACR.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Pancreáticas / Neoplasias da Mama / Receptor ErbB-2 / Vacinas Anticâncer / Vacinas de DNA Limite: Animals / Female / Humans Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Pancreáticas / Neoplasias da Mama / Receptor ErbB-2 / Vacinas Anticâncer / Vacinas de DNA Limite: Animals / Female / Humans Idioma: En Ano de publicação: 2014 Tipo de documento: Article