Your browser doesn't support javascript.
loading
Cu and CuO/titanate nanobelt based network assemblies for enhanced visible light photocatalysis.
Logar, Manca; Bracko, Ines; Potocnik, Anton; Jancar, Bostjan.
Afiliação
  • Logar M; Department of Materials Science and Engineering, Stanford University , Stanford, California 94305, United States.
Langmuir ; 30(16): 4852-62, 2014 Apr 29.
Article em En | MEDLINE | ID: mdl-24697758
ABSTRACT
3D network configurations of copper(II) oxide/titanate nanobelt (CuO/TiNBs) and copper/titanate nanobelt (Cu/TiNBs) were formed using a two-step polyelectrolyte-assisted synthesis and assembly approach. The photoactivity of the TiNB/CuO and Cu/TiNB composite networks is significantly enhanced as compared to the activity of 3D structures formed of pristine TiNB. An efficient, UV-vis-light-induced electron transfer at the two-component interface achieved by the intimate coupling of TiNB with p-type semiconducting CuO and plasmonic Cu nanoparticles in composite heterostructures facilitates control over the system's exciton dynamics, which results in highly efficient UV-vis photocatalytic performance of heterostructures. The superior photocatalytic activity of the metal and semiconductor/semiconductor nanocomposite structures in the visible region is discussed, highlighting the role of interfacial electron-charge transfer (IFCT) in semiconductor-semiconductor (CuO/TiNB) and surface plasmon resonance (SPR) of Cu nanoparticles in metal-semiconductor heterostructures.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2014 Tipo de documento: Article