Your browser doesn't support javascript.
loading
Dense energetic nitraminofurazanes.
Fischer, Dennis; Klapötke, Thomas M; Reymann, Marius; Stierstorfer, Jörg.
Afiliação
  • Fischer D; Department of Chemistry, Energetic Materials Research, Ludwig Maximilian University, Butenandtstrasse 5-13, 81377 München (Germany), Fax: (+49) 89-2180-77492.
Chemistry ; 20(21): 6401-11, 2014 May 19.
Article em En | MEDLINE | ID: mdl-24737545
3,3'-Diamino-4,4'-bifurazane (1), 3,3'-diaminoazo-4,4'-furazane (2), and 3,3'-diaminoazoxy-4,4'-furazane (3) were nitrated in 100 % HNO3 to give corresponding 3,3'-dinitramino-4,4'-bifurazane (4), 3,3'-dinitramino-4,4'-azofurazane (5) and 3,3'-dinitramino-4,4'-azoxyfurazane (6), respectively. The neutral compounds show very imposing explosive performance but possess lower thermal stability and higher sensitivity than hexogen (RDX). More than 40 nitrogen-rich compounds and metal salts were prepared. Most compounds were characterized by low-temperature X-ray diffraction, all of them by infrared and Raman spectroscopy, multinuclear NMR spectroscopy, elemental analysis, and by differential scanning calorimetry (DSC). Calculated energetic performances using the EXPLO5 code based on calculated (CBS-4M) heats of formation and X-ray densities support the high energetic performances of the nitraminofurazanes as energetic materials. The sensitivities towards impact, friction, and electrostatic discharge were also explored. Additionally the general toxicity of the anions against vibrio fischeri, representative for an aquatic microorganism, was determined.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2014 Tipo de documento: Article