Your browser doesn't support javascript.
loading
DICER1 is essential for survival of postmitotic rod photoreceptor cells in mice.
Sundermeier, Thomas R; Zhang, Ning; Vinberg, Frans; Mustafi, Debarshi; Kohno, Hideo; Golczak, Marcin; Bai, Xiaodong; Maeda, Akiko; Kefalov, Vladimir J; Palczewski, Krzysztof.
Afiliação
  • Sundermeier TR; Department of Pharmacology.
  • Zhang N; Department of Pharmacology.
  • Vinberg F; Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, Missouri, USA.
  • Mustafi D; Department of Pharmacology.
  • Kohno H; Department of Pharmacology.
  • Golczak M; Department of Pharmacology.
  • Bai X; Center for RNA Molecular Biology, and.
  • Maeda A; Department of Pharmacology, Department of Ophthalmology and Visual Sciences, Case Western Reserve University, School of Medicine, Cleveland, Ohio, USA; and.
  • Kefalov VJ; Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, Missouri, USA.
  • Palczewski K; Department of Pharmacology, kxp65@case.edu.
FASEB J ; 28(8): 3780-91, 2014 Aug.
Article em En | MEDLINE | ID: mdl-24812086
Photoreceptor cell death is the proximal cause of blindness in many retinal degenerative disorders; hence, understanding the gene regulatory networks that promote photoreceptor survival is at the forefront of efforts to combat blindness. Down-regulation of the microRNA (miRNA)-processing enzyme DICER1 in the retinal pigmented epithelium has been implicated in geographic atrophy, an advanced form of age-related macular degeneration (AMD). However, little is known about the function of DICER1 in mature rod photoreceptor cells, another retinal cell type that is severely affected in AMD. Using a conditional-knockout (cKO) mouse model, we report that loss of DICER1 in mature postmitotic rods leads to robust retinal degeneration accompanied by loss of visual function. At 14 wk of age, cKO mice exhibit a 90% reduction in photoreceptor nuclei and a 97% reduction in visual chromophore compared with those in control littermates. Before degeneration, cKO mice do not exhibit significant defects in either phototransduction or the visual cycle, suggesting that miRNAs play a primary role in rod photoreceptor survival. Using comparative small RNA sequencing analysis, we identified rod photoreceptor miRNAs of the miR-22, miR-26, miR-30, miR-92, miR-124, and let-7 families as potential factors involved in regulating the survival of rods.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Degeneração Retiniana / Células Fotorreceptoras Retinianas Bastonetes / MicroRNAs / Ribonuclease III / RNA Helicases DEAD-box Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Degeneração Retiniana / Células Fotorreceptoras Retinianas Bastonetes / MicroRNAs / Ribonuclease III / RNA Helicases DEAD-box Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2014 Tipo de documento: Article