Your browser doesn't support javascript.
loading
Small-conductance calcium-activated potassium (SK) channels contribute to action potential repolarization in human atria.
Skibsbye, Lasse; Poulet, Claire; Diness, Jonas Goldin; Bentzen, Bo Hjorth; Yuan, Lei; Kappert, Utz; Matschke, Klaus; Wettwer, Erich; Ravens, Ursula; Grunnet, Morten; Christ, Torsten; Jespersen, Thomas.
Afiliação
  • Skibsbye L; Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
  • Poulet C; Department of Pharmacology and Toxicology, Medical Faculty, Technical University Dresden, Dresden, Germany.
  • Diness JG; Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark Acesion Pharma ApS, Ole Maaløes Vej 3, Copenhagen DK-2200, Denmark.
  • Bentzen BH; Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark Acesion Pharma ApS, Ole Maaløes Vej 3, Copenhagen DK-2200, Denmark.
  • Yuan L; Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
  • Kappert U; Clinic for Cardiac Surgery, Heart Center Dresden, Medical Faculty, Dresden University of Technology, Dresden, Germany.
  • Matschke K; Clinic for Cardiac Surgery, Heart Center Dresden, Medical Faculty, Dresden University of Technology, Dresden, Germany.
  • Wettwer E; Department of Pharmacology and Toxicology, Medical Faculty, Technical University Dresden, Dresden, Germany.
  • Ravens U; Department of Pharmacology and Toxicology, Medical Faculty, Technical University Dresden, Dresden, Germany.
  • Grunnet M; Acesion Pharma ApS, Ole Maaløes Vej 3, Copenhagen DK-2200, Denmark mgr@acesionpharma.com.
  • Christ T; Department of Pharmacology and Toxicology, Medical Faculty, Technical University Dresden, Dresden, Germany Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
  • Jespersen T; Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
Cardiovasc Res ; 103(1): 156-67, 2014 Jul 01.
Article em En | MEDLINE | ID: mdl-24817686
ABSTRACT

AIMS:

Small-conductance calcium-activated potassium (SK) channels are expressed in the heart of various species, including humans. The aim of the present study was to address whether SK channels play a functional role in human atria. METHODS AND

RESULTS:

Quantitative real-time PCR analyses showed higher transcript levels of SK2 and SK3 than that of the SK1 subtype in human atrial tissue. SK2 and SK3 were reduced in chronic atrial fibrillation (AF) compared with sinus rhythm (SR) patients. Immunohistochemistry using confocal microscopy revealed widespread expression of SK2 in atrial myocytes. Two SK channel inhibitors (NS8593 and ICAGEN) were tested in heterologous expression systems revealing ICAGEN as being highly selective for SK channels, while NS8593 showed less selectivity for these channels. In isolated atrial myocytes from SR patients, both inhibitors decreased inwardly rectifying K(+) currents by ∼15% and prolonged action potential duration (APD), but no effect was observed in myocytes from AF patients. In trabeculae muscle strips from right atrial appendages of SR patients, both compounds increased APD and effective refractory period, and depolarized the resting membrane potential, while only NS8593 induced these effects in tissue from AF patients. SK channel inhibition did not alter any electrophysiological parameter in human interventricular septum tissue.

CONCLUSIONS:

SK channels are present in human atria where they participate in repolarization. SK2 and SK3 were down-regulated and had reduced functional importance in chronic AF. As SK current was not found to contribute substantially to the ventricular AP, pharmacological inhibition of SK channels may be a putative atrial-selective target for future antiarrhythmic drug therapy.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Canais de Potássio Ativados por Cálcio de Condutância Baixa / Miocárdio Limite: Humans Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Canais de Potássio Ativados por Cálcio de Condutância Baixa / Miocárdio Limite: Humans Idioma: En Ano de publicação: 2014 Tipo de documento: Article