Your browser doesn't support javascript.
loading
A fast multiparameter MRI approach for acute stroke assessment on a 3T clinical scanner: preliminary results in a non-human primate model with transient ischemic occlusion.
Zhang, Xiaodong; Tong, Frank; Li, Chun-Xia; Yan, Yumei; Nair, Govind; Nagaoka, Tsukasa; Tanaka, Yoji; Zola, Stuart; Howell, Leonard.
Afiliação
  • Zhang X; 1 Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA ; 2 Department of Radiology, School of Medicine, Emory University, Atlanta, GA 30322, USA ; 3 the Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta
  • Tong F; 1 Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA ; 2 Department of Radiology, School of Medicine, Emory University, Atlanta, GA 30322, USA ; 3 the Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta
  • Li CX; 1 Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA ; 2 Department of Radiology, School of Medicine, Emory University, Atlanta, GA 30322, USA ; 3 the Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta
  • Yan Y; 1 Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA ; 2 Department of Radiology, School of Medicine, Emory University, Atlanta, GA 30322, USA ; 3 the Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta
  • Nair G; 1 Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA ; 2 Department of Radiology, School of Medicine, Emory University, Atlanta, GA 30322, USA ; 3 the Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta
  • Nagaoka T; 1 Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA ; 2 Department of Radiology, School of Medicine, Emory University, Atlanta, GA 30322, USA ; 3 the Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta
  • Tanaka Y; 1 Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA ; 2 Department of Radiology, School of Medicine, Emory University, Atlanta, GA 30322, USA ; 3 the Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta
  • Zola S; 1 Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA ; 2 Department of Radiology, School of Medicine, Emory University, Atlanta, GA 30322, USA ; 3 the Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta
  • Howell L; 1 Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA ; 2 Department of Radiology, School of Medicine, Emory University, Atlanta, GA 30322, USA ; 3 the Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta
Quant Imaging Med Surg ; 4(2): 112-22, 2014 Apr.
Article em En | MEDLINE | ID: mdl-24834423
ABSTRACT
Many MRI parameters have been explored and demonstrated the capability or potential to evaluate acute stroke injury, providing anatomical, microstructural, functional, or neurochemical information for diagnostic purposes and therapeutic development. However, the application of multiparameter MRI approach is hindered in clinic due to the very limited time window after stroke insult. Parallel imaging technique can accelerate MRI data acquisition dramatically and has been incorporated in modern clinical scanners and increasingly applied for various diagnostic purposes. In the present study, a fast multiparameter MRI approach including structural T1-weighted imaging (T1W), T2-weighted imaging (T2W), diffusion tensor imaging (DTI), T2-mapping, proton magnetic resonance spectroscopy, cerebral blood flow (CBF), and magnetization transfer (MT) imaging, was implemented and optimized for assessing acute stroke injury on a 3T clinical scanner. A macaque model of transient ischemic stroke induced by a minimal interventional approach was utilized for evaluating the multiparameter MRI approach. The preliminary results indicate the surgical procedure successfully induced ischemic occlusion in the cortex and/or subcortex in adult macaque monkeys (n=4). Application of parallel imaging technique substantially reduced the scanning duration of most MRI data acquisitions, allowing for fast and repeated evaluation of acute stroke injury. Hence, the use of the multiparameter MRI approach with up to five quantitative measures can provide significant advantages in preclinical or clinical studies of stroke disease.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2014 Tipo de documento: Article