Your browser doesn't support javascript.
loading
Concurrent Generation of Ordinal and Normal Data.
Demirtas, Hakan; Yavuz, Yasemin.
Afiliação
  • Demirtas H; a Division of Epidemiology and Biostatistics, School of Public Health (MC923) , University of Illinois at Chicago , Chicago , Illinois , USA.
J Biopharm Stat ; 25(4): 635-50, 2015.
Article em En | MEDLINE | ID: mdl-24906138
The use of joint models that are capable of handling different data types is becoming increasingly popular in biopharmaceutical practice. Evaluation of various statistical techniques that have been developed for mixed data in simulated environments requires joint generation of multiple variables. In this article, we propose a unified framework for concurrently simulating ordinal and normal data given the marginal characteristics and correlation structure. We illustrate our technique in two simulation settings where we use artificial data as well as real depression score data from psychiatric research, demonstrating negligibly small deviations between the specified and empirically computed quantities.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processos Estocásticos / Interpretação Estatística de Dados / Modelos Estatísticos Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processos Estocásticos / Interpretação Estatística de Dados / Modelos Estatísticos Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2015 Tipo de documento: Article