Your browser doesn't support javascript.
loading
AMPK-dependent inhibitory phosphorylation of ACC is not essential for maintaining myocardial fatty acid oxidation.
Zordoky, Beshay N M; Nagendran, Jeevan; Pulinilkunnil, Thomas; Kienesberger, Petra C; Masson, Grant; Waller, Terri J; Kemp, Bruce E; Steinberg, Gregory R; Dyck, Jason R B.
Afiliação
  • Zordoky BN; From the Department of Pediatrics, Faculty of Medicine and Dentistry, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada (B.N.M.Z., J.N., T.P., P.C.K., G.M., T.J.W., J.R.B.D.); Department of Medicine, St. Vincent's Institute of Medic
  • Nagendran J; From the Department of Pediatrics, Faculty of Medicine and Dentistry, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada (B.N.M.Z., J.N., T.P., P.C.K., G.M., T.J.W., J.R.B.D.); Department of Medicine, St. Vincent's Institute of Medic
  • Pulinilkunnil T; From the Department of Pediatrics, Faculty of Medicine and Dentistry, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada (B.N.M.Z., J.N., T.P., P.C.K., G.M., T.J.W., J.R.B.D.); Department of Medicine, St. Vincent's Institute of Medic
  • Kienesberger PC; From the Department of Pediatrics, Faculty of Medicine and Dentistry, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada (B.N.M.Z., J.N., T.P., P.C.K., G.M., T.J.W., J.R.B.D.); Department of Medicine, St. Vincent's Institute of Medic
  • Masson G; From the Department of Pediatrics, Faculty of Medicine and Dentistry, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada (B.N.M.Z., J.N., T.P., P.C.K., G.M., T.J.W., J.R.B.D.); Department of Medicine, St. Vincent's Institute of Medic
  • Waller TJ; From the Department of Pediatrics, Faculty of Medicine and Dentistry, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada (B.N.M.Z., J.N., T.P., P.C.K., G.M., T.J.W., J.R.B.D.); Department of Medicine, St. Vincent's Institute of Medic
  • Kemp BE; From the Department of Pediatrics, Faculty of Medicine and Dentistry, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada (B.N.M.Z., J.N., T.P., P.C.K., G.M., T.J.W., J.R.B.D.); Department of Medicine, St. Vincent's Institute of Medic
  • Steinberg GR; From the Department of Pediatrics, Faculty of Medicine and Dentistry, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada (B.N.M.Z., J.N., T.P., P.C.K., G.M., T.J.W., J.R.B.D.); Department of Medicine, St. Vincent's Institute of Medic
  • Dyck JR; From the Department of Pediatrics, Faculty of Medicine and Dentistry, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada (B.N.M.Z., J.N., T.P., P.C.K., G.M., T.J.W., J.R.B.D.); Department of Medicine, St. Vincent's Institute of Medic
Circ Res ; 115(5): 518-24, 2014 Aug 15.
Article em En | MEDLINE | ID: mdl-25001074
ABSTRACT
RATIONALE The energy sensor AMP-activated protein kinases (AMPK) is thought to play an important role in regulating myocardial fatty acid oxidation (FAO) via its phosphorylation and inactivation of acetyl coenzyme A carboxylase (ACC). However, studies supporting this have not directly assessed whether the maintenance of FAO rates and subsequent cardiac function requires AMPK-dependent inhibitory phosphorylation of ACC.

OBJECTIVE:

To determine whether preventing AMPK-mediated inactivation of ACC influences myocardial FAO or function. METHODS AND

RESULTS:

A double knock-in (DKI) mouse (ACC-DKI) model was generated in which the AMPK phosphorylation sites Ser79 on ACC1 and Ser221 (Ser212 mouse) on ACC2 were mutated to prevent AMPK-dependent inhibitory phosphorylation of ACC. Hearts from ACC-DKI mice displayed a complete loss of ACC phosphorylation at the AMPK phosphorylation sites. Despite the inability of AMPK to regulate ACC activity, hearts from ACC-DKI mice displayed normal basal AMPK activation and cardiac function at both standard and elevated workloads. In agreement with the inability of AMPK in hearts from ACC-DKI mice to phosphorylate and inhibit ACC, there was a significant increase in cardiac malonyl-CoA content compared with wild-type mice. However, cardiac FAO rates were comparable between wild-type and ACC-DKI mice at baseline, during elevated workloads, and after a more stressful condition of myocardial ischemia that is known to robustly activate AMPK.

CONCLUSIONS:

Our findings show AMPK-dependent inactivation of ACC is not essential for the control of myocardial FAO and subsequent cardiac function during a variety of conditions involving AMPK-independent and AMPK-dependent metabolic adaptations.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Acetil-CoA Carboxilase / Metabolismo Energético / Proteínas Quinases Ativadas por AMP / Ácidos Graxos / Contração Miocárdica / Miocárdio Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Acetil-CoA Carboxilase / Metabolismo Energético / Proteínas Quinases Ativadas por AMP / Ácidos Graxos / Contração Miocárdica / Miocárdio Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2014 Tipo de documento: Article