A Fourier transform infrared spectroscopy study of cell membrane domain modifications induced by docosahexaenoic acid.
Biochim Biophys Acta
; 1840(10): 3115-22, 2014 Oct.
Article
em En
| MEDLINE
| ID: mdl-25018005
BACKGROUND: Detergent resistant membranes (DRMs) are a useful model system for the in vitro characterization of cell membrane domains. Indeed, DRMs provide a simple model to study the mechanisms underlying several key cell processes based on the interplay between specific cell membrane domains on one hand, and specific proteins and/or lipids on the other. Considering therefore their biological relevance, the development of methods capable to provide information on the composition and structure of membrane domains and to detect their modifications is highly desirable. In particular, Fourier transform infrared (FTIR) spectroscopy is a vibrational tool widely used for the study not only of isolated and purified biomolecules but also of complex biological systems, including intact cells and tissues. One of the main advantages of this non-invasive approach is that it allows obtaining a molecular fingerprint of the sample under investigation in a rapid and label-free way. METHODS: Here we present an FTIR characterization of DRM fractions purified from the human breast cancer cells MCF-7, before and after treatment with the omega 3 fatty acid docosahexaenoic acid (DHA), which was found to promote membrane microdomain reorganization. RESULTS AND CONCLUSIONS: We will show that FTIR spectroscopy coupled with multivariate analysis enables to monitor changes in the composition of DRMs, induced in particular by the incorporation of DHA in cell membrane phospholipids. GENERAL SIGNIFICANCE: This study paves the way for a new label-free characterization of specific membrane domains within intact cells, which could provide complementary information to the fluorescence approaches presently used.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Fosfolipídeos
/
Ácidos Docosa-Hexaenoicos
/
Microdomínios da Membrana
/
Modelos Químicos
Limite:
Humans
Idioma:
En
Ano de publicação:
2014
Tipo de documento:
Article