Your browser doesn't support javascript.
loading
Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons.
Goldie, Belinda J; Dun, Matthew D; Lin, Minjie; Smith, Nathan D; Verrills, Nicole M; Dayas, Christopher V; Cairns, Murray J.
Afiliação
  • Goldie BJ; School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia Schizophrenia Research Institute, Sydney, Australia Centre for Translational Neuroscience and Mental Health, Hunter Medical Research Institute, University of Newcastle,
  • Dun MD; School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia Hunter Cancer Research Alliance, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, 2308, Australia.
  • Lin M; School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.
  • Smith ND; ABRF, Research Services, University of Newcastle, Callaghan, NSW 2308, Australia.
  • Verrills NM; School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia Hunter Cancer Research Alliance, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, 2308, Australia.
  • Dayas CV; School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia Centre for Translational Neuroscience and Mental Health, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia.
  • Cairns MJ; School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia Schizophrenia Research Institute, Sydney, Australia Centre for Translational Neuroscience and Mental Health, Hunter Medical Research Institute, University of Newcastle,
Nucleic Acids Res ; 42(14): 9195-208, 2014 Aug.
Article em En | MEDLINE | ID: mdl-25053844
ABSTRACT
Rapid input-restricted change in gene expression is an important aspect of synaptic plasticity requiring complex mechanisms of post-transcriptional mRNA trafficking and regulation. Small non-coding miRNA are uniquely poised to support these functions by providing a nucleic-acid-based specificity component for universal-sequence-dependent RNA binding complexes. We investigated the subcellular distribution of these molecules in resting and potassium chloride depolarized human neuroblasts, and found both selective enrichment and depletion in neurites. Depolarization was associated with a neurite-restricted decrease in miRNA expression; a subset of these molecules was recovered from the depolarization medium in nuclease resistant extracellular exosomes. These vesicles were enriched with primate specific miRNA and the synaptic-plasticity-associated protein MAP1b. These findings further support a role for miRNA as neural plasticity regulators, as they are compartmentalized in neurons and undergo activity-associated redistribution or release into the extracellular matrix.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: MicroRNAs / Exossomos / Neurônios Tipo de estudo: Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: MicroRNAs / Exossomos / Neurônios Tipo de estudo: Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2014 Tipo de documento: Article